
Porting from RTX64
to MaxRT eRTOS

USER GUIDE



Porting from RTX64 to MaxRT eRTOS

IZ-DOC-MaxRT-eRTOS-0004

Copyright © 2025 by IntervalZero, Inc. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means, graphic, electronic, or mechanical,
including photocopying and recording or by any information storage or retrieval system without the prior written permission of
IntervalZero, Inc., unless such copying is expressly permitted by federal copyright law.

While every effort has been made to ensure the accuracy and completeness of all information in this document, IntervalZero, Inc.
assumes no liability to any party for any loss or damage caused by errors or omissions or by statements of any kind in this
document, its updates, supplements, or special editions, whether such errors, omissions, or statements result from negligence,
accident, or any other cause. IntervalZero, Inc. further assumes no liability arising out of the application or use of any product or
system described herein; nor any liability for incidental or consequential damages arising from the use of this document.
IntervalZero, Inc. disclaims all warranties regarding the information contained herein, whether expressed, implied or statutory,
including implied warranties of merchantability or fitness for a particular purpose.

IntervalZero, Inc. reserves the right to make changes to this document or to the products described herein without further notice.

MaxRT eRTOS and RTX64 are trademarks of IntervalZero, Inc.

Microsoft is a registered trademark and Windows 11 and Windows 10 are trademarks of Microsoft Corporation.

All other companies and product names may be trademarks or registered trademarks of their respective holders.

200 Fifth Avenue, FL 6, STE 6020
Waltham, MA 02451
Phone: 781-996-4481
www.intervalzero.com

http://www.intervalzero.com/


About this Porting Guide 1

Product Comparison 2

Available Product Packages 2

Resource Partitioning 3

Target Platform 3

Processor Enumerations 3

Activation, Licensing, and Configuration 4

Activation 4

Licensing 5

eRTOS Runtime Licensing 5

eRTOS SDK Licensing 6

Configuration 6

Tools 7

Tool Sets 7

Subsystem 9

No Windows Integration 9

System Behavior Differences 9

HAL and Subsystem Differences 10

Application Organization 11

Executable and Library File Extensions 11

Thread Stack Size 11

Memory Allocation 11

Project Settings and Configurations 12

Configurations 12

Headers 12

Libraries 13

Contents

i



Code Changes 14

System affinity mask 14

Removed / Deprecated APIs 14

Removed / Deprecated Real-Time APIs 14

Removed / Deprecated Windows-Supported APIs 15

Basic Networking 16

Network Link Layer (NL2) 16

Porting a NAL Driver to the NL2 Driver 17

Header and Library Requirements 17

Rework the Startup Logic 18

Rework the Shutdown Logic 18

Use NL2 Function Pointers instead of Direct Function Calls 19

Rework the Interrupts Handling 20

Rework the Link Status Monitoring Logic 22

Rework the Frame Transmission Logic 22

Rework the Frame Reception Logic 24

Remove Unnecessary Locks 26

Replace the RtndIoctl Function 27

Replace the RtndRequest function 29

Implement Frame Buffer Allocation Functions 29

TCP/IP Stack 30

Configuring Multiple IP Addresses in eRTOS 30

Support 31

Contacting Technical Support by Phone 31

Online Resources 32

ii



About this Porting Guide
This guide describes the steps to port an existing RTX64 application to MaxRT eRTOS. It also highlights system
differences between the two products and issues to look for during migration.

This guide contains active links to the IntervalZero website and product documentation. Therefore, we
recommend you have an Internet connection and an installation of MaxRT eRTOS.

Note: This guide assumes you have installed the eRTOS Runtime. For more installation information, see
theMaxRT eRTOS Runtime Installation Guide.

IZ-DOC-MaxRT-eRTOS-0004 1 About this Porting Guide



Product Comparison
eRTOS is a 64-bit standalone real-time operating system designed to run 64-bit binaries independently. In
contrast, RTX64 is a 64-bit real-time extension for Windows, enabling real-time applications to run alongside
Windows applications.

Unlike RTX64, eRTOS operates without Windows, providing benefits such as independence from periodic
Windows updates, reduced hardware requirements (e.g., no need for a powerful GPU or large amounts of RAM),
and full access to CPU cores without OS overhead. While some features available in RTX64 may not be present in
eRTOS or have been re-architected, this design ensures precise timing and deterministic responsiveness without
OS-related dependencies.

This section outlines major differences in product packages and system requirements.

Available Product Packages
The RTX64 4.x and eRTOS 1.x product packages include some functionality differences:

RTX64 4.x eRTOS 1.x

l Runtime

o Includes the Network Abstraction Layer
(NAL)

o Includes the Treck RT-TCP/IP Stack (always
installed; must be purchased separately)

l SDK

l Runtime Merge Modules

l RTX64 Vision (standalone add-on)

l Runtime

o Includes the Network Link Layer (NL2)

o Includes the Treck TCP/IP Stack (must be
purchased separately)

o Includes the MCCI USB Stack

l SDK

1

IZ-DOC-MaxRT-eRTOS-0004 2 Product Comparison



Resource Partitioning
Target Platform
eRTOS and RTX64 handle resource partition differently to ensure real-time processes receive the necessary
resources while minimizing interference from non-real-time tasks.

l Processor Allocation – eRTOS uses all processors enumerated by UEFI/BIOS, while RTX64 requires a system
with at least two logical processors/cores, with one core dedicated to RTSS.

l Memory and I/O Access – eRTOS uses all available system RAM and I/O devices.

l Storage Support – eRTOS supports only SATA drives operating in AHCI mode.

l File System Requirement – eRTOS requires the FAT32 file system.

Processor Enumerations
eRTOS and RTX64 handle processor enumeration differently. eRTOS utilizes all processors enumerated by
UEFI/BIOS, while RTX64 follows a different enumeration method that may result in shared cache between
Windows and RTX64 processors.

IZ-DOC-MaxRT-eRTOS-0004 3 Resource Partitioning



Activation, Licensing, and
Configuration
eRTOS activation and configuration is done through the MaxRTActivationUtil.exe command line utility, which
activates and locks your SDK products to a specific machine or IntervalZero-provided dongle. RTX64 activation
and configuration is done through the Activation and Configuration UI utility and command line utility.

For more details about the MaxRT activation command line utility, please see Using MaxRTActivationUtil.exe in
eRTOS Help.

Both RTX64 and eRTOS SDK components must be activated with a valid license before they can be used.

Activation
l Activation Key – A string used to generate a license that locks your product to a specific machine or an
IntervalZero-provided dongle.

l License – A signed string generated by IntervalZero or from an activation key that allows you to access
product features.

l License File – A file containing licenses for all activated product features.

l Customer ID (CID) – A unique identifier assigned to all IntervalZero customers. Under certain conditions, it is
used to bind Runtime and SDK licenses.

l Node-locked – A license type that restricts usage to a specific system or with a single dongle

2

IZ-DOC-MaxRT-eRTOS-0004 4 Activation, Licensing, and Configuration



Below is a list of important differences between RTX64 and eRTOS related to component activation:

RTX64 4.x eRTOS 1.x

l Activation and Configuration utility or
command line utility Rtx64ActivationUtil.exe
available in the RTX64 SDK and Runtime

l Licenses are node-locked for Runtime and SDK.

l License Server

l Fingerprint File

l IntervalZero Dongles

l Standalone IntervalZero Dongle Activation
Utility

l MaxRTActivationUtil.exe activation command
utility available in the eRTOS SDK.

l SDK licenses are node-locked.

l Runtime licenses are not node-locked but
associated with an SDK through a Customer ID
(CID).

l License Server (SDK only)

l Fingerprint File (SDK only)

l IntervalZero Dongles (SDK only)

l Standalone IntervalZero Dongle Activation
Utility (SDK only)

Licensing

eRTOS Runtime Licensing
To license the eRTOS Runtime, complete the following steps:

1. Log in to your IntervalZero Customer Center account and download your eRTOS Runtime License.

2. Place the downloaded license file, eRTOS.lic, in the eRTOS Runtime installation directory. By default, this
path is <eRTOS Volume Letter>:\MaxRT\eRTOS.

3. For more information on eRTOS Runtime licensing, refer to the eRTOS Help and eRTOS Runtime Installation
Guide.

IZ-DOC-MaxRT-eRTOS-0004 5 Activation, Licensing, and Configuration



eRTOS SDK Licensing
To license the eRTOS SDK, you can use the MaxRT activation command line utility,
MaxRTActivationUtil.exe. This utility requires a valid activation key, which you can find in the email you
received from IntervalZero Sales when you purchased eRTOS or by viewing your orders in the IntervalZero
Customer Center. You can activate eRTOS SDK to a machine or IntervalZero-provided dongle. To activate with
the eRTOS activation command line utility, do the following:

1. Launch aWindows Command Prompt as Administrator.

2. TypeMaxRTActivationUtil.exe -a <activation key>.

3. Press Enter.

For more information on eRTOS SDK Licensing, refer to the eRTOS Help and eRTOS SDK Installation Guide.

Configuration
eRTOS does not use a Control Panel to configure the components like RTX64. eRTOS allows configuring its
components, Real-time HAL, and Real-time Kernel through editing the following files:

l To configure and manage the network (NL2, and TCP/IP Stack), network interfaces, and USB stack, edit
RtConfig.rtreg file.

l To configure the Real-time HAL, edit the grub.cfg file.

l To configure the Real-time Kernel, edit the RtKrnlConfig.ini file.

IZ-DOC-MaxRT-eRTOS-0004 6 Activation, Licensing, and Configuration



Tools
RTX64 provides a Control Panel to configure its Runtime components. eRTOS provides the following tools and
utilities to configure different settings:

l eRTOS Console - Allows you to run commands and view application output using a USB keyboard. It
functions similarly to the Windows Command Prompt and the RTX64 Console.

l eRTOS Visual Studio Remote Debug Monitor (RtVSMon.ertos) - Enables debugging of programs running
on a different eRTOS target from a system with the eRTOS SDK and Visual Studio installed. In RTX64,
debugging is handled by VSMon.exe, a Visual Studio executable.

l MaxRTActivationUtil.exe - A command-line utility used for activating the eRTOS SDK. .In RTX64, activation is
handled through the Activation and Configuration Utility or via the command-line tool
Rtx64ActivationUtil.exe.

l Network Utilities - eRTOS includes the same set of TCP/IP-based network utilities as RTX64 — RtArp,
RtRoute, RtIpConfig, and RtPing, providing tools for diagnosing and configuring network connections.

l Run - Used to run an eRTOS application through the eRTOS Console or through the application batch file
(AutoStart.bat). In RTX64, the RtssRun utility is used to run a RTSS application from the Windows
command prompt.

l Kill - Used to view or terminate a specific eRTOS process. In RTX64, the RtssKill utility is used to forcibly
terminate RTSS processes.

l System Response Time Measurement (SRTM) - A real-time API (RTAPI) timer latency measurement tool that
measures timer latency observed by an application. This tool is available in both RTX64 and eRTOS.

Tool Sets
Below is a list of tool sets provided in RTX64 and eRTOS:

3

IZ-DOC-MaxRT-eRTOS-0004 7 Tools



RTX64 4.x eRTOS 1.x

l RtssRun

l RtssKill

l RTX64 Activation and Configuration

l RTX64 MSpaces

l RTX64 Objects

l RTX64 Server

l StampTool(SDK)

l System Response Timer Measurement

l Network Utilities - RtArp, RtIpConfig, RtPing,
and RtRoute

l PCI Scan bus

l Microsoft Remote Debugging Monitor

l RTX64 Control Panel

l RTX64 Analyzer

l RTX64 Latency View

l RTX64 Monitor

l RTX64 System Tray

l RTX64 Task Manager

l RTX64RemoteConfig(SDK)

l KSRTM

l Run

l Kill

l MaxRTActivationUtil.exe

l eRTOS MSpaces

l eRTOS Objects

l eRTOS Console

l eRTOS StampTool (SDK)

l System Response Time Measurement (SRTM)

l Network Utilities - RtArp, RtIpConfig, RtPing,
and RtRoute

l PCI Scan bus

l eRTOS Visual Studio Remote Debug Monitor
(RtVSMon.ertos)

l Configuration files - RtConfig.rtreg,
grub.cfg, and RtKrnlConfig.ini

IZ-DOC-MaxRT-eRTOS-0004 8 Tools



Subsystem
eRTOS is a standalone real-time operating system (RTOS), whereas RTX64 functions as a real-time extension for
Windows. Although the RTX64 subsystem and the eRTOS kernel share the same underlying real-time logic,
eRTOS offers additional low-level functionality that RTX64 instead delegates to Windows. Since eRTOS operates
independently of Windows, several key differences exist, as outlined below.

No Windows Integration
Unlike RTX64, which runs real-time applications alongside Windows, eRTOS operates independently. As a result:

l No Windows Applications – Windows-based applications cannot be linked to eRTOS.

l No Windows Kernel Drivers – Kernel drivers designed for Windows cannot be linked or loaded in eRTOS.

l No Device Conversion to RTSS – In RTX64, devices must be converted for RTX64 use to prevent Windows
from using them. In eRTOS, this is not necessary as the devices are accessible by default.

l No PnP INF/CAT and Driver Signing – Windows-style driver installation, including Plug and Play (PnP) INF
files, catalog (CAT) signing, and certification, is not required or supported. Devices are readily accessible in
eRTOS.

System Behavior Differences
l No Windows Shutdown Handling – eRTOS does not support the Windows-style shutdown process.

l No Blue Screen of Death (BSOD) – Since eRTOS is independent of Windows, system crashes do not result in
a BSOD. Consequently, no crash dump files are generated, and debugging via WinDBG is not applicable.

4

IZ-DOC-MaxRT-eRTOS-0004 9 Subsystem



HAL and Subsystem Differences
RTX64 relies on the Windows Hardware Abstraction Layer (HAL) for core system management, including CPU
core allocation, cache control, interrupt handling, timer management, and other hardware operations. In
contrast, eRTOS operates independently of any host OS, directly initializing and controlling hardware at the
bare-metal level. eRTOS and RTX64 use different system components for HAL and subsystem management.

eRTOS and RTX64 use different system components for Hardware Abstraction Layer (HAL) and subsystem
management:

Component RTX64 4.x eRTOS 1.x

File System Uses native Windows File system (NTFS) Implements lightweight FAT32 file system

Registry Integrates with Windows Registry Provides simplified custom registry
structure

Memory Allocates from Windows non-page memory
pool

Manages memory independently with
custom allocator

Hardware Relies on Windows Hardware abstraction
layer and drivers

Direct bare-metal hardware control

IZ-DOC-MaxRT-eRTOS-0004 10 Subsystem



Application Organization

Executable and Library File Extensions
Real-time applications and dynamic link libraries have different file extensions in RTX64 and eRTOS:

eRTOS RTX64

Real-Time Application .ertos .rtss

Real-Time DLL .edll .rtdll

Thread Stack Size
The default thread stack size for eRTOS is 0x10000 which is bigger than RTX64 due to WolfSSL needs.

Memory Allocation
In RTX64, memory is allocated through multiple spaces (MSpaces), separating internal bookkeeping from
process allocations. Each process has its own allocation space, and shared memory or IPC objects are handled by
the Subsystem. In contrast, eRTOS uses a simpler local memory allocation approach.

5

IZ-DOC-MaxRT-eRTOS-0004 11 Application Organization



Project Settings and Configurations
Like RTX64, eRTOS has application templates that can be used to create a real-time application executable or
real-time DLL.

Configurations
The eRTOS application templates provide two default configurations that build 64-bit applications using the
Microsoft 64-bit compiler or the Intel 16.0 x64 compiler:

l eRTOSDebug – eRTOS debug information (.ertos or .edll). The default stack size for this configuration
with C/C++ Runtime support is 32 pages (131072 bytes).

l eRTOSRelease – eRTOS application or DLL(.ertos or .edll). The default Stack size for this configuration
is 12 pages (65536 bytes).

Headers
Like RTX64, in eRTOS the RtApi header file has been divided into two header files:

l RtApi.h – this header file is needed by applications linked to eRTOS. In RTX64, it contains functionality
available to both RTSS and RTX64-enabled Windows applications.

l RtssApi.h – this header file is only needed by the process applications. In RTX64, it contains functionality
available for RTSS applications.

Because the NAL is now changed to NL2 in eRTOS, a few changes are also made for the header files:

l Rtnl2Api.h - this header file is to needed to use NL2. In RTX64, it uses RtNalApi.h for the NAL.

l Rtnd.h - this header file needs to be included by NL2 network driver sources.

To use NL2 and TCP/IP API calls in eRTOS, you need to include Rtnl2Api.h and RttcpipApi.h.

6

IZ-DOC-MaxRT-eRTOS-0004 12 Project Settings and Configurations



Libraries
In eRTOS, most of the libraries remain the same as in RTX64. Below highlights the changes in eRTOS:

l To use real-time processes (.ertos) within eRTOS, you will need to include Rtkrnl.lib instead of Rtx_
rtss.lib, which is used in RTX64.

l To use TCP/IP you will need to include Rttcpip.lib as in RTX64.

l To use the eRTOS Network Link Layer (NL2), you need to include Rtnl2Api.lib. The NL2 is not available
in RTX64, which utilizes the Network Abstraction Layer (NAL) using RtNal.lib.

IZ-DOC-MaxRT-eRTOS-0004 13 Project Settings and Configurations



Code Changes
This topic outlines the APIs included in RTX64 4.x SDKs that were enhanced, changed, or removed in eRTOS 1.x
SDKs.

System affinity mask
l RTX64 – Processor numbering starts from the first RTSS processor to the last RTSS processor. The first RTSS
processor number is equal to the last Windows processor number plus 1. The first RTSS processor number
will never be 0.

l eRTOS – Processor numbering starts from the first processor to the last processor. The first processor
number always being 0.

Removed / Deprecated APIs
This section lists RTX64 4.x APIs that were either removed from or are deprecated in eRTOS 1.x SDKs.

Removed / Deprecated Real-Time APIs

RTX64 4.x API eRTOS 1.0 and later

RtGetCurrentHalTimerPeriod Removed.

RtIsInRtss Removed.

RtGetRuntimeVersionEx Removed.

RtIsAppRunnableW Removed.

7

IZ-DOC-MaxRT-eRTOS-0004 14 Code Changes



RTX64 4.x API eRTOS 1.0 and later

RtGetLicenses Unsupported. Licensing APIs from
RTX64/wRTOS are not supported in eRTOS.

RtIsRuntimeLicensed Unsupported. Licensing APIs from
RTX64/wRTOS are not supported in eRTOS,

RtIsTcpStackLicensed Unsupported. Licensing APIs from
RTX64/wRTOS are not supported in eRTOS,

Removed / Deprecated Windows-Supported APIs
eRTOS does not support Windows-managed code applications requiring interaction with the eRTOS Runtime.
Additionally, it does not provide support for Windows driver inter-process communication (RTKAPI) functions.

RTX64 4.x API eRTOS 1.0 and later

RegEnumKeyExA Unsupported.

RegEnumKeyExW Unsupported.

RegEnumKeyW Unsupported.

IZ-DOC-MaxRT-eRTOS-0004 15 Code Changes



Basic Networking
eRTOS utilizes the Network Link Layer (NL2) for processing and networking, while RTX64 utilizes the Network
Abstraction Layer (NAL). Additionally, eRTOS manages networking, including NL2 and the TCP/IP stack, through
the RtConfig.rtreg file, whereas RTX64 relies on its Control Panel for configuration.

Network Link Layer (NL2)
The RTX64 Runtime includes a Network Abstraction layer (NAL), while the eRTOS Runtime includes a completely
redesigned Network Link Layer (NL2) that abstracts the network hardware and driver functions from the upper-
level protocol stacks and provides management interfaces for those upper layers to easily query for and use
available network assets. It is a separate layer from the TCP/IP Stack. Using the NL2, you can easily take
advantage of network functionality such as EtherCAT, TSN (Time Sensitive Networks), and PTP (Precision Time
Protocol).

The NL2 supplies a simple API that abstracts the caller from the various register configurations, which vary from
adapter to adapter. It also supplies methods to allow direct layer 2 transmit and receive calls within the driver,
thus eliminating the latencies found in a TCP/IP stack.

Below are the major differences of NL2 from eRTOS:

l Improved support for hardware timestamping (simpler APIs, and possibility to get notified when an egress
timestamp is available)

l Improved support for link status monitoring (no need to acquire a queue to monitor the link status)

l Improved support for MSI-X multi vector (users can now statically map queue interrupt sources to MSI-X
Messages)

l Simplified driver development (a lot of code that drivers had to implement themselves is now put in
common inside the NL2)

8

IZ-DOC-MaxRT-eRTOS-0004 16 Basic Networking



l Possibility to use a hardware queue in shared access mode (multiple applications can transmit/receive
through it at the same time)

l Improved latency performances for transmit/receive operations on a queue used in exclusive access mode

Porting a NAL Driver to the NL2 Driver
This topic describes the steps required to port an RTX64 NAL NIC driver to an eRTOS 1.0 NL2 NIC driver that can
be used by the eRTOS Network Link Layer (NL2).

For information on NL2 NIC drivers, see the Help topic Creating a NIC Driver.

TOPICS IN THIS SECTION:

l Header and Library Requirements

l Rework the Startup Logic

l Rework the Shutdown Logic

l Use NL2 Function Pointers instead of Direct Function Calls

l Rework the Interrupts Handling

l Rework the Link Status Monitoring Logic

l Rework the Frame Transmission Logic

l Rework the Frame Reception Logic

l Remove Unnecessary Locks

l Replace the RtndIoctl Function

l Replace the RtndRequest function

l Implement Frame Buffer Allocation Functions

Header and Library Requirements
To integrate your driver with the NL2, include the Rtnd.h header file. To prevent errors, do not use
Rtnl2Api.h.

IZ-DOC-MaxRT-eRTOS-0004 17 Basic Networking



If your driver uses only a limited subset of the C standard library (e.g.,memset,memcpy,memcmp, strlen,
strcmp, strcpy, strncpy, strcat, itoa), you can replace the Microsoft C runtime libraries with the
startupDll.lib and RtCruntime.lib libraries.

Additionally, remove the following header files and library from your driver if they were previously referenced:

l Headers: rtNalApi.h, rtnapi.h, winsock2.h, ws2tcpip.h

l Library: RTX64Nal.lib

Rework the Startup Logic
During its startup phase, the RTX64 NAL loads the NIC drivers and calls the following functions for each enabled
NIC:

l RtndInitDriverializeInterface

l RtndConfigure

l RtndUpDown

In contrast, the eRTOS NL2 calls these functions:

l RtndInitDriver

l RtndManageInterface

l RtndQueryInterfaceCapability

l RtndSetInterface

l RtndStartInterface

l RtndQueryMacAddress

l RtndQueryInterfaceFeature

Rework the Shutdown Logic
During its shutdown phase, the RTX64 NAL calls this function:

l RtndUpDown

In contrast, the eRTOS NL2 calls these functions:

IZ-DOC-MaxRT-eRTOS-0004 18 Basic Networking



l RtndShutdownInterface

l RtndStopInterface

l RtndUnmanageInterface

Use NL2 Function Pointers instead of Direct Function
Calls
RTX64 NAL NIC drivers link with RTX64Nal.lib and request NAL services by calling the following functions
exported by the NAL process:

l RtnEnumPciCards

l RtnGetDeviceName

l RtnSetLinkAddress

l RtnGetMcastCount

l RtnIndicateStatus

l RtnNotifyTransmitQueue

l RtnTransmitCompleteCallback

l RtnNotifyRecvQueue

l RtnSetDataLong

l RtnGetDataLong

l RtnGetPacket

l RtnDecodePacket

l RtnIntializeCriticalLock

l RtnDeleteCriticalLock

l RtnEnterCriticalLock

l RtnLeaveCriticalLock

In contrast, eRTOS NL2 NIC drivers request NL2 services using the function pointers supplied by the NL2 in the
call to RtndInitDriver:

IZ-DOC-MaxRT-eRTOS-0004 19 Basic Networking



l GetVerbose

l NotifyLinkStatusChange

l NotifyTxInterrupt

l NotifyRxInterrupt

l NotifyEgressTimestamp

l CreateTxBuffers

l DestroyTxBuffers

l CreateRxBuffers

l DestroyRxBuffers

Rework the Interrupts Handling

Interrupts Enabling
RTX64 NAL NIC drivers are expected to enable the following interrupts at startup and keep them enabled until
the NAL shuts down:

l Link Status Change interrupt

l Transmit interrupt

l Receive interrupt

eRTOS NL2 NIC drivers are expected to enable the following interrupts at startup:

l Link Status Change interrupt

l Egress Timestamp interrupt (if the hardware supports Egress Timestamping)

The NL2 determines whether Transmit and Receive interrupts should be enabled by calling the following
functions at runtime:

l RtndEnableTxInterruptSource

l RtndEnableRxInterruptSource

IZ-DOC-MaxRT-eRTOS-0004 20 Basic Networking



Interrupts Servicing
In RTX64 NAL NIC drivers, an IST typically does the following work:

l In case of a Link Status Change interrupt:
o Set an event to wake up the Line Status thread

l In case of a Transmit interrupt:
o Call RtnNotifyTransmitQueue (which wakes up the application’s Transmit Complete thread) or set an
event to wake up the driver’s Transmit Complete thread

l In case of a Receive interrupt:
o If the queue is attached to an application, update the count of received frames and call
RtnNotifyRecvQueue (which signals the application’s Receive event), otherwise, flush the queue
(extract the filled buffers and re-submit them immediately)

Note: NAL NIC drivers ignore Egress Timestamp interrupts.

In eRTOS NL2 NIC drivers, an IST should typically do the following work:

l In case of a Link Status Change interrupt:
o Call RTND_CALLBACKS.NotifyLinkStatusChange

l In case of a Transmit interrupt:
o Call RTND_CALLBACKS.NotifyTxInterrupt

l In case of a Receive interrupt:
o Call RTND_CALLBACKS.NotifyRxInterrupt

l In case of an Egress Timestamp interrupt:
o Call RTND_CALLBACKS.NotifyEgressTimestamp

Note: NL2 drivers should not access the DMA rings or use a lock in their ISTs.

IZ-DOC-MaxRT-eRTOS-0004 21 Basic Networking



Rework the Link Status Monitoring Logic
RTX64 NAL NIC drivers have their Line Status Monitoring thread, which awakes every time a Link Status Change
interrupt occurs. The thread performs the following tasks:

l Reads the new link status from the NIC registers

l Reconfigures some of the NIC registers, if required

l Calls RtnIndicateStatus

eRTOS NL2 NIC drivers don't need to have their Line Status Monitoring thread because the NL2 itself
implements the monitoring logic. NL2 NIC drivers only need to provide the RtndQueryLinkStatus function, which
should do the following:

l Read the new link status from the NIC registers

l Reconfigure some of the NIC registers, if required

l Return the new link status to the NL2

Rework the Frame Transmission Logic

About Frame Transmission
In the RTX64 NAL, the general rule is that frame transmission is serviced by a dedicated Transmit Complete
thread. Depending on the application’s request, this thread can run within the context of the application process
or the context of the driver (i.e. the context of the NAL process). When running in the application context, the
Transmit Complete thread calls a callback provided by the application every time a buffer in the queue is
consumed. When running in the context of the driver, the Transmit Complete thread simply extracts the
consumed buffer and makes it available for future transmission.

In the eRTOS NL2, frame transmission is always serviced at the initiative of the NL2, which calls
RtndExtractTxBuffer.

IZ-DOC-MaxRT-eRTOS-0004 22 Basic Networking



Attach Transmit Queues
When an application acquires a Transmit Queue and enables the Transmit Complete callback functionality, the
RTX64 NAL calls the following function of the NIC driver:

l RtndAttachToTransmitQueue

This function notifies the driver that Transmit interrupts for this queue should be serviced by the application’s
Transmit Complete thread rather than the driver’s Transmit Complete thread.

For eRTOS NL2 NIC drivers, the equivalent function is RtndAttachTxQueue, which is called from the context of
any process that plans to use this queue.

Submit Buffers
When the application provides a buffer containing a frame to transmit, the RTX64 NAL calls the following
functions of the NIC driver:

l RtndTransmit

l RtndTransmitEx

In contrast, the eRTOS NL2 calls these functions:

l RtndSubmitTxBuffer

l RtndApplyTxBuffers

Extract Buffers
When a Transmit Queue is acquired by an application that enabled the Transmit Complete Callback
functionality, the RTX64 NAL calls the following function from the application’s Transmit Complete thread to
extract the consumed buffers:

l RtndServiceTransmitQueue

In other cases, the NAL driver is responsible for automatically extracting the consumed buffers using its Transmit
Complete thread.

IZ-DOC-MaxRT-eRTOS-0004 23 Basic Networking



In contrast, the extraction of consumed buffers by the eRTOS NL2 NIC drivers is always done upon request from
the NL2 using the following function:

l RtndExtractTxBuffer

Detach Transmit Queues
When an application releases a Transmit Queue that has the Transmit Complete callback functionality enabled,
the RTX64 NAL calls the following function of the NIC driver:

l RtndDetachTransmitQueue

This function notifies the driver that Transmit interrupts for this queue should now be serviced by the driver’s
Transmit Complete thread rather than the application’s Transmit Complete thread.

For eRTOS NL2 NIC drivers, the equivalent function is RtndDetachTxQueue, which is called from the context of
any process that previously called RtndAttachTxQueue.

Rework the Frame Reception Logic

About Frame Reception
In the RTX64 NAL, frame reception is serviced either by the application that acquired the queue or by the driver’s
IST when no application has acquired the queue.

In the eRTOS NL2, frame reception is always serviced at the initiative of the NL2, which calls RtndExtractRxBuffer.

Start/Stop the Queue
This is an optional feature that doesn’t exist in RTX64 NAL NIC drivers.

If a NIC supports dynamically starting/stopping a Receive Queue independently of the other Receive Queues,
the NL2 NIC driver should implement the following functions:

l RtndStartRxQueue

l RtndStopRxQueue

IZ-DOC-MaxRT-eRTOS-0004 24 Basic Networking



The eRTOS NL2 will call these functions to ensure that a Receive Queue is in the same initial state each time a
new application acquires it.

Attach Receive Queues
When an application acquires a Receive Queue, the RTX64 NAL calls the following function of the NIC driver:

l RtndAttachToReceiveQueue

This function notifies the driver that Receive interrupts for this queue must be serviced by the application rather
than the driver’s IST.

For eRTOS NL2 NIC drivers, the equivalent function is RtndAttachRxQueue, which is called from the context of
any process that plans to use this queue.

Extract Buffers
When an application acquires a Receive Queue, the rTX64 NAL calls the following functions from the
application’s process to extract the filled buffers:

l RtndReceive

l RtndReceiveWithCallback

In other cases, the NAL driver is responsible for automatically extracting the filled buffers in the IST and re-
submitting them immediately to the queue.

For eRTOS NL2 NIC drivers, buffer extraction is always done upon request from the NL2 using the following
function:

l RtndExtractRxBuffer

Submit Buffers
RTX64 NAL NIC drivers automatically re-submit the extracted buffers after they have been processed (either
after they have been copied to the application’s buffer by RtndReceive or after they have been supplied to the
application through the Receive Callback function).

IZ-DOC-MaxRT-eRTOS-0004 25 Basic Networking



In contrast, eRTOS NL2 NIC drivers do not re-submit automatically; they wait for the NL2 to call the following
functions:

l RtndSubmitRxBuffer

l RtndApplyRxBuffers

Detach Receive Queues
When an application releases a Receive Queue, the RTX64 NAL calls the following function of the NIC driver:

l RtndDetachReceiveQueue

This function notifies the driver that the driver's IST should now service Receive interrupts for this queue rather
than the application.

For eRTOS NL2 NIC drivers, the equivalent function is RtndDetachRxQueue, which is called from the context of
any process that previously called RtndAttachRxQueue.

Remove Unnecessary Locks
RTX64 NAL NIC drivers generally need to use their locks for at least the following purposes:

l One lock per Transmit Queue, used by the driver’s Transmit Complete thread and by the following functions
to protect concurrent access to the queue registers: RtndAttachToTransmitQueue,
RtndDetachTransmitQueue, RtndTransmit, RtndTransmitEx, RtndServiceTransmitQueue.

l One lock per Receive Queue, used by the IST and by the following functions to protect concurrent access to
the queue registers: RtndAttachToReceiveQueue, RtndDetachReceiveQueue, RtndReceive,
RtndReceiveWithCallback, RtndIoctl.

l One general lock, used by the following function to protect concurrent access to the general NIC registers:
RtndIoctl.

The eRTOS NL2 implements its locks and ensures that specific functions are called from within a single thread
only. Therefore, NL2 NIC drivers don't require additional locks.

IZ-DOC-MaxRT-eRTOS-0004 26 Basic Networking



Replace the RtndIoctl Function
The RTX64 NAL calls the RtndIoctl function for different purposes specified by the command code. The table
below lists the equivalent functions of the eRTOS NL2 NIC driver that provide the same services:

RtndIoctl command code NL2 NIC driver equivalent function

ENIOCPROMISC RtndSetPromiscuousMode

ENIOCALL, ENIOCNORMAL RtndSetPassBadFramesMode

ENIOADDMULTI,

ENIODELMULTI

RtndSetMulticastFilter

ENIOLINKSTATUS RtndQueryLinkStatus

RTNAL_IOCTL_RX_MONITOR There is no equivalent; this functionality doesn’t exist in the
NL2.

RTNAL_IOCTL_TX_MONITOR There is no equivalent; this functionality doesn’t exist in the
NL2.

RTNAL_IOCTL_READ_TX_HW_TIMESTAMP RtndExtractLastTxTimestamp

RTNAL_IOCTL_READ_RX_HW_TIMESTAMP There is no equivalent; this functionality doesn’t exist in the
NL2.

RTNAL_IOCTL_READ_HW_TIMER There is no equivalent; this functionality doesn’t exist in the
NL2.

RTNAL_IOCTL_READ32_REG There is no equivalent; this functionality doesn’t exist in the
NL2.

RTNAL_IOCTL_WRITE32_REG There is no equivalent; this functionality doesn’t exist in the
NL2.

IZ-DOC-MaxRT-eRTOS-0004 27 Basic Networking



RtndIoctl command code NL2 NIC driver equivalent function

RTNAL_IOCTL_READ_RX_PACKET_COUNT There is no equivalent; this functionality doesn’t exist in the
NL2.

RTNAL_IOCTL_READ_TX_PACKET_COUNT There is no equivalent; this functionality doesn’t exist in the
NL2.

RTNAL_IOCTL_USE_RX_NOTIFICATIONS There is no equivalent; this functionality doesn’t exist in the
NL2.

RTNAL_IOCTL_SET_RX_POLLING There is no equivalent; this functionality doesn’t exist in the
NL2.

RTNAL_IOCTL_CLEAR_RX_POLLING There is no equivalent; this functionality doesn’t exist in the
NL2.

RTNAL_IOCTL_GET_RX_ETHERTYPE_FILTER RtndGetDispatcherEtherTypeEntry

RTNAL_IOCTL_SET_RX_ETHERTYPE_FILTER,

RTNAL_IOCTL_CLEAR_RX_ETHERTYPE_
FILTER

RtndSetDispatcherEtherTypeEntry

RTNAL_IOCTL_SET_RX_MESSAGE_TYPE_
TO_TIMESTAMP

There is no equivalent; this functionality doesn’t exist in the
NL2.

RTNAL_IOCTL_SET_TX_MESSAGE_TYPE_
TO_TIMESTAMP

There is no equivalent; this functionality doesn’t exist in the
NL2.

RTNAL_IOCTL_GET_SYSTEM_TIMER There is no equivalent; this functionality doesn’t exist in the
NL2.

RTNAL_IOCTL_SET_INTERRUPT_
MODERATION

RtndSetInterruptModeration

RTNAL_IOCTL_GET_PCI_BUS_LOCATION There is no equivalent; this functionality doesn’t exist in the
NL2.

IZ-DOC-MaxRT-eRTOS-0004 28 Basic Networking



Replace the RtndRequest function
The RTX64 NAL calls the RtndRequest function for different purposes as specified by the OID. The table below
lists the equivalent functions of the eRTOS NL2 NIC driver that provide the same services:

RtndRequest OID NL2 NIC driver equivalent function

RTND_OID_GEN_MAC_ADDRESS RtndQueryMacAddress

RTND_OID_GEN_MEDIA_CONNECT_
STATUS,

RTND_OID_GEN_MEDIA_DUPLEX_STATE,

RTND_OID_GEN_LINK_SPEED

RtndQueryLinkStatus

All other OIDs There is no equivalent; these functionalities don’t exist in the
NL2.

Implement Frame Buffer Allocation Functions
The following functions are specific to the NL2 and must be implemented only in NL2 NIC drivers. They allow the
NL2 to allocate or release a batch of buffers used to hold Ethernet frames for a specific Transmit or Receive
Queue. These functions are necessary because each NIC may have special requirements for allocating frame
buffers, making it the driver's responsibility to handle these allocations.

The functions to implement are as follows:

l RtndAllocateTxFrameDataBuffers

l RtndFreeTxFrameDataBuffers

l RtndAllocateRxFrameDataBuffers

l RtndFreeRxFrameDataBuffers

IZ-DOC-MaxRT-eRTOS-0004 29 Basic Networking



TCP/IP Stack
The TCP/IP Stack is an optional purchasable protocol stack that provides deterministic processing and
networking capability.

The major difference of TCP/IP stack in eRTOS from RTX64 is the addition of APIs that allow changing the IP
address at runtime.

Configuring Multiple IP Addresses in eRTOS
Unlike RTX64, eRTOS does not support pre-configuring multiple IP Addresses for a NIC in the registry file — only
one can be pre-configured. To add additional IP Addresses, users must write an application that calls
RttcpipAddInterfaceAddress. IP addresses can also be removed using RttcpipDeleteInterfaceAddress. These
additional IP addresses must be reconfigured each time the eRTOS system starts with the TCP/IP stack enabled.

IZ-DOC-MaxRT-eRTOS-0004 30 Basic Networking



Support
For help with eRTOS, contact IntervalZero Technical Support by phone or access the online support resources
available at https://www.intervalzero.com/en-support/en-customer-service/

Contacting Technical Support by Phone

Note: If you purchased an IntervalZero product through a third-party reseller, please contact the reseller
for support.

Location Number Hours

United States 1-781-996-4481

At the prompt, press
3 for Support.

Monday - Friday, 8:30 a.m. – 5:30 p.m. US Eastern
Time (GMT-500), excluding holidays.

R.O.C. Taiwan + 886-2-2556-8117 Monday - Friday, 9:00 a.m. – 5:00 p.m. Taipei
Standard Time (GMT+8), excluding holidays.

Before Calling Technical Support
Please have this information ready when you contact IntervalZero Technical Support:

l Your Support ID

Customers who purchase direct support receive an e-mail address and password for accessing the
IntervalZero Customer Support Portal.

l Your eRTOS version number

Note: You must have a valid maintenance contract to receive product support.

IZ-DOC-MaxRT-eRTOS-0004 31 Support

https://www.intervalzero.com/en-support/en-customer-service/


Online Resources
Visit https://www.intervalzero.com/en-support/en-customer-service/ to log in to the Customer Support Portal
(requires valid credentials), access online product Help, and view Support and Lifecycle policies and Product
Release Notices.

IZ-DOC-MaxRT-eRTOS-0004 32 Support

https://www.intervalzero.com/en-support/en-customer-service/


A

activation 4
activation and configuration 4
application organization 11

C

code changes 14
configuration 4, 12

E

extensions 11

L

Licensing 4

M

memory 11
allocating 11

N

network 16
networking 16

NL2 16
TCP/IP 30

NL2 16

P

packages 2
product

packages 2
requirements 2

product comparison 2
project settings 12

R

resource partitioning 3

S

subsystem 9

T

TCP/IP 30
thread stack size 11
tools 7

Index

I


	About this Porting Guide
	Product Comparison
	Available Product Packages

	Resource Partitioning
	Target Platform
	Processor Enumerations

	Activation, Licensing, and Configuration
	Activation
	Licensing
	eRTOS Runtime Licensing
	eRTOS SDK Licensing

	Configuration

	Tools
	Tool Sets

	Subsystem
	No Windows Integration
	System Behavior Differences
	HAL and Subsystem Differences

	Application Organization
	Executable and Library File Extensions
	Thread Stack Size
	Memory Allocation

	Project Settings and Configurations
	Configurations
	Headers
	Libraries

	Code Changes
	System affinity mask
	Removed / Deprecated APIs
	Removed / Deprecated Real-Time APIs
	Removed / Deprecated Windows-Supported APIs


	Basic Networking
	Network Link Layer (NL2)
	Porting a NAL Driver to the NL2 Driver
	Header and Library Requirements
	Rework the Startup Logic
	Rework the Shutdown Logic
	Use NL2 Function Pointers instead of Direct Function Calls
	Rework the Interrupts Handling
	Rework the Link Status Monitoring Logic
	Rework the Frame Transmission Logic
	Rework the Frame Reception Logic
	Remove Unnecessary Locks
	Replace the RtndIoctl Function
	Replace the RtndRequest function
	Implement Frame Buffer Allocation Functions

	TCP/IP Stack
	Configuring Multiple IP Addresses in eRTOS

	Support
	Contacting Technical Support by Phone
	Online Resources


