
Transforming 64-Bit Windows 
to Deliver Software-Only 
Real-Time Performance



Transforming 64-Bit Windows to Deliver Software-Only Real-Time Performance p. 2

Next-generation industrial, vision, medical and other systems 
seek to combine high-end graphics and rich user interfaces 
with hard real-time performance, prioritization and precision. 

Today’s industrial PCs running 64-bit Windows, complemented by a 
separate scheduler on multicore multiprocessors, can deliver that pre-
cise real-time performance on software-defined peripherals.

The pace of advancement in silicon integration and performance con-
tinues unabated, driven by the demands of ever-richer applications. 
That advancement, however, has been taking different directions, espe-
cially in the case of the integration of functionality onto single silicon 
dies. The task for the embedded OEM is to decide how to turn these 
revolutionary developments into real products that can provide what 
customers demand. That now includes high-definition audio and video, 
machine vision, real-time industrial products such as six-axis motion 
control, real-time connectivity and a rich user interface. That user 
interface often must also include the ability to present complex real-
time graphical data that is linked to the application in real time.

Today’s hardware has that capability, but the way to realize it is through 
software. With processor cores that are powerful enough, there is no 
need to rely on custom hardware to implement specialized functions; 
that can now be done with software. Software can be more easily 
updated and improved than hardware, and it is here where OEMs can 
implement their real value.

And the best way to smooth the task of implementing complex real-
time software applications is to start with the right hardware environ-
ment. As noted above, hardware integration has been taking different 
directions. On the one hand, there is a trend to integrate the kinds 
of devices used by real-time systems onto a single die. These might 
include a multicore processor, a DSP, an FPGA or an advanced graphics 
unit. We have recently seen, for example, devices that integrate proces-
sor cores and FPGAs, or processor cores with advanced graphics units 
that are also capable of intense number computation such as DSP.

On the other hand, there is the opportunity to tap into today’s 
multi-core CPUs, whose tremendous power and performance is 
the result of multiple cores and, to a smaller extent, clock speeds 
approaching 3 GHz. These standard commercial off-the-shelf 
industrial PCs (IPCs) provide platforms that, with some additional 



Transforming 64-Bit Windows to Deliver Software-Only Real-Time Performance p. 3

instructions and a scheduler, can deliver DSP-level processing, per-
formance, prioritization and precision. And with today’s CPUs, this 
processing can be done in floating point for more diverse calculations 
than with the fixed point typically found in a DSP. Such performance 
changes the focus from trying to optimize the use of every instruction 
to actually fully exploiting the real power of the multicore IPC.

This trend has already resulted in devices that can outstrip traditional 
DSP processors. Another major development in this arena is the move 
to 64-bit architectures that are backward compatible with their 32-bit 
predecessors, but which offer enormously enhanced performance. 
This has several advantages, because even a highly integrated chip 
with different integrated functions with their different instruction sets 
and protocols throws up obstacles to a unified software environment, 
which adds both hardware hurdles as well as burdens on the develop-
ment team to circumvent them.

The all-new implementation of IntervalZero’s RTX64 takes the latter 
path and transforms Windows into a fully functional real-time operat-
ing system that runs entirely on x64 multicore hardware. Additionally, 
in so doing it provides access to 128 Gbytes of non-paged memory, 
depending on actual mapped physical RAM size. Overall, Windows’ 
512 Gbytes of physical memory dwarfs the 4 Gbytes physical memory 
limitation of 32-bit Windows. This vast amount of available memory 
opens the door to previously unavailable applications like MRI medical 
imaging and high-end video editing to name a few.

Above all, RTX64 provides a single commodity hardware environment 
in the form of multicore x64 devices. This enables a single software 
environment that can accommodate Windows with its rich user inter-
face, available applications and development environment. And Win-
dows is seamlessly connected to the full-function real-time symmetric 
multiprocessing (SMP) RTX64 environment that can scale from 1 to 
63 cores. Applications compile to a single code base with no need for 
FPGAs or DSPs to execute logic based on different code that must be 
separately compiled and linked with the main application. One set of 
hardware, one operating system environment, one set of tools and 
one base of code. That translates to one team that can communicate 
and work together and produce high-performance, scalable applica-
tions while dramatically shortening time-to-market.



Transforming 64-Bit Windows to Deliver Software-Only Real-Time Performance p. 4

A Liberating Unified Architecture
Freed from the isolation of the real-time system and from other func-
tions such as the user interface, OEMs are able to explore more inno-
vative solutions with less risk and overhead. For example, consider 
the user interface. Today’s advanced applications—and their users—
are demanding feature-rich, interactive, touch-activated graphical 
user interfaces. Advanced embedded systems are far beyond the 
headless systems of yesteryear. In addition, it is becoming increas-
ingly important to provide a definitive user experience based on that 
interface, one that can help reinforce product branding.

The old way of developing an embedded user interface was to have 
a team design the UI on a desktop system using a graphics program 
such as Photoshop, Illustrator, or perhaps one of the later tools aimed 
at embedded systems. The result would be a prototype UI with sim-
ulated data and interfaces. That would then be handed off to the 
team developing the real-time application, and their task would be 
to implement the UI design under whichever RTOS environment they 
were using. This inevitably entailed changes and compromises, and 
testing that was mostly put off until late in the development cycle with 
predictable effects on time-to-market.

Using RTX64, development teams can build their UI with whichever 
Windows-based tools they choose and be confident that the objects 
in the interface can communicate directly with the RTX64 APIs, and 
exchange commands and data with the embedded application. Any 
changes to the UI or to the embedded functionality can be quickly 
traced and updated between the two. The same seamless access to 
networking, databases and storage can be provided for hard real-time 
applications under RTX64 because it does not alter Windows in any 
way, but is a real-time extension to Windows. Thus its communica-
tions with Windows are seamlessly integrated and do not depend on 
mechanisms like remote procedure calls, virtualization, or hypervisors 
that are associated with other implementations of multiple operating 
systems. The addition of a second scheduler and an RTOS infrastruc-
ture allows UI functions to execute in Windows while real-time func-
tions execute on the RTX scheduler. Putting the right task on the right 
scheduler delivers the best overall result.



Transforming 64-Bit Windows to Deliver Software-Only Real-Time Performance p. 5

RTX64—A Fresh Start into 64-Bit
The new RTX64 was built from the ground up to open the world of 
64-bit real-time computing, and it is not a port of the 32-bit prod-
uct. Professional audio and video, high-end medical devices along with 
advanced industrial control systems that incorporate machine vision 
and rich user interfaces, all place demands that can only be met by 
advanced 64-bit systems that can include the rich user interface possi-
ble with Windows along with the high performance of a 64-bit RTOS.

RTX64 provides an architecture that takes advantage of the advanc-
ing technologies—specifically, high-speed, multicore x64—that can 
outperform and outscale the traditional embedded environment that 
relies on DSPs, FPGAs and microcontrollers (Figure 1). It does this 
by implementing their functions at even higher performance in a 
single hardware environment. And it can do this in conjunction with 

Figure 1
RTX64 provides an architecture 
that takes advantage of the ad-

vancing technologies—specifically, 
high-speed, multicore x64—that 
can outperform and outscale the 

traditional embedded environment 
that relies on DSPs, FPGAs and 

microcontrollers.

Windows Process

Windows Subsystem

Windows Driver
Linked with RTOS

Windows
Kernel and Device Drivers

Windows HAL

Hardware
Platform

Windows
Processor
0

Windows
Processor
X

RTSS
Processor
X+1

RTSS
Processor
X+2

RTSS
Processor
31/63

Windows Process
Linked with RTOS

Real-time
Server Console

Real-time
Process or DLL

Real-time
Process or DLL

Real-time
Server

Real-time Subsystem

Real-time HAL Extension

Real-time
TCP/IP Stack

RtApi

RtkApi

Rtxtcpip

User Mode

Kernel Mode



Transforming 64-Bit Windows to Deliver Software-Only Real-Time Performance p. 6

Windows, which offers the rich user environment and access to a huge 
number of applications that can take advantage of and support the 
real-time operations.

To start with, RTX64 has a hardware abstraction layer (HAL) that is 
distinct from the Windows HAL, but operates alongside it. Thus, from 
the start, no modification of Windows is needed. The two systems 
operate side-by-side and communicate via existing mechanisms. The 
RTX64 HAL can scale from 1 to 63 cores to deliver deterministic real-
time performance with timing down to 1 μs (dependent on hardware 
support). The scheduler, which resides in the RTX64 real-time sub-
system (RTSS), can assign threads to cores to achieve symmetrical 
multiprocessing (SMP) without relying on virtualization or complex 
interprocess communications.

This is also a result of the vast memory space that is available to all 
cores without memory partitioning. Up to 128 Gbytes of non-paged 
memory and up to 512 Gbytes of physical memory can be accessed by 
the entire system. This is a huge advantage for medical applications 
that increasingly depend on visualization such as the Optical Coherence 
Tomography (OCT) technology now under development, or for real-time 
surgical robots that depend on accurate rendering and processing of 
organ images like a beating heart. It is essential for advanced industrial 
control systems that must not only present visual data to the user, but 
also process it in real time to drive motion control of tools and also for 
the inspection of parts produced by the process.

Having a memory space like this available to such a high-performance 
general-purpose hardware platform allows OEMs to develop specialized 
software that can perform extremely specialized functions that would 
have otherwise required specialized hardware components. Experience 
has shown that mixing different hardware involves quite different sets 
of software that depend on different disciplines (e.g., C++ vs. Verilog), 
which not only greatly slows development time, but also places limits on 
performance and scalability. Scaling such systems only brings increased 
complexity with each disparate piece of additional hardware with its own 
interfaces and unique software needs.

The RTX64 real-time subsystem (RTSS), which includes a real-time 
scheduler, is fully independent from the Windows kernel and the 
Windows scheduler. There is no inherent interaction or interference 



Transforming 64-Bit Windows to Deliver Software-Only Real-Time Performance p. 7

of Windows and real-time threads. Only intended communications 
between threads by the developer can occur using the real-time API. A 
real-time API is provided for use with user-mode Windows applications, 
or a real-time kernel API for use with Windows kernel drivers.

In scenarios such as those enabled by RTX64, applications can present 
themselves to the user as common Windows applications, while behind 
the user interface, many of their features are taking advantage of 
RTX64 real-time processes. For example, a machine tool control pro-
gram might present a view of the part being machined along with con-
trols and settings that the user can access via a touch screen. However, 
the actual application consists of two parts. The Windows program can 
communicate with the real-time control program on two levels—the 
kernel and the user level—by means of real-time APIs. 

At the kernel level, a Windows driver can send data to the RTX64 side, 
which is perhaps controlling the travel of a tool, and receive current 
position data, which it then passes to the user interface, or subjects to 
some sort of processing via a real-time kernel API (RtkApi). At the user 
level, the operator can set values or the position of switches, etc., on 
the touch screen and these will communicate with a Windows process. 
That process in turn uses the real-time API (RtApi) to communicate with 
the RTSS. These two classes of API communicate directly with the RTSS, 
which is where the real-time control program resides.

As the demand for rich user interfaces for real-time and embed-
ded systems continues to grow, developers are being faced with the 
dilemma of how to link such interfaces with RTOS environments that 
are traditionally not designed to support complex user interfaces. We 
have already mentioned the often-awkward tricks that must be per-
formed to match such an RTOS-based system to a complex user inter-
face. With the RTX64 extension to Windows, it is straightforward to 
use one’s favorite graphical tools to design a user interface that can 
link directly to the underlying real-time application using the RTX 
APIs. Even more attractive to some could be the ability to simply pur-
chase an off-the-shelf software control and data acquisition (SCADA) 
tool, which comes with many pre-designed but customizable gauges, 
sliders, switches and representations of pumps, tanks, actuators, etc., 
and develop from there using the same RTX64 APIs to hook up to the 
system.



Transforming 64-Bit Windows to Deliver Software-Only Real-Time Performance p. 8

The same goes for video data. There is a wide selection of tools and 
applications that can represent physical phenomena, such as heat dis-
tribution, fluid dynamics, stress and more, and they all run under Win-
dows. Image processing applications exist that can do edge detection 
and other operations needed for parts inspection. The list goes on. The 
OEM has, at this level of the Windows user interface, a rich selection 
of “build or buy” options, all of which he can confidently use and/or 
experiment with knowing that the interface to the underlying real-time 
application is well-defined and will work out of the box.

SMP Paves the Way to Performance 
and Scalability
There are, of course, different schools of thought on how to take ad-
vantage of multicore processors. These basically break down into 
asymmetrical multiprocessing (AMP), or virtualization and symmetrical 
multiprocessing (SMP). One approach to AMP requires that a copy of the 
operating system run on each of the cores. This then requires assign-
ment of memory to the individual cores and brings with it the need 
for interprocess communications that add to overhead. If one tries to 
implement a user interface with Windows the same inefficiencies apply, 
requiring interprocess communications between Windows and multiple 
instantiations of RTOSs and memory partitions. Then try processing 
(under the RTOS) and displaying (under Windows) real-time video data 
in such a system—involving more IPC—and things clog up very quick-
ly. Scaling the system to more cores requires more copies of the RTOS, 
more memory partitioning and reconfiguration of the application.

Another approach to AMP is to implement virtualization with a hypervi-
sor, which is a separate layer of software running directly on the hard-
ware that divides the hardware among the operating systems (Figure 2). 
Some multicore processors even have built-in hardware assistance for 
virtualization, which basically presents a virtual “motherboard” to each 
operating system. Virtualization is often used to support “separation 
kernels,” which are isolated from the rest of the system, communicat-
ing only via tightly controlled mechanisms and protocols. This can be 
useful in certain cases, but its goal is isolation, whereas the goal of SMP 
is integration.

Again, the isolation extends to the user interface, which is running on 
its own virtual processor or motherboard and must communicate with 



Transforming 64-Bit Windows to Deliver Software-Only Real-Time Performance p. 9

processes running on other cores via interprocess communications and 
remote procedure calls, but now also through the hypervisor, which 
adds even more latency. Additionally, AMP systems have a scheduler for 
every virtualized operating system. This means additional communica-
tion and synchronization that rapidly becomes hugely complex.

RTX64 represents a real-time operating system extension to Windows 
and works with Windows as a single operating system environment that 
uses the SMP approach to treat the multiprocessor hardware as a sin-
gle shared resource. It requires only a single copy of the entire oper-
ating system environment including the real-time subsystem with its 
real-time scheduler that has access to all cores assigned to the subsys-
tem (Figure 3). Unlike with AMP, the code can be written once and can 
be later scaled as functions are added by statically reassigning threads 
or adding cores and repartitioning. Since all the cores, and hence all the 
threads, have direct access to shared data and all resources are visi-
ble to all real-time processes, there is no need for additional copies or 
the use of complex interprocess communications schemes or remote 
procedure calls.

The ability to use a single extended operating system environment 
across a homogenous hardware platform reduces the OEM’s major 
hardware decision to, “Do I have enough cores to do what I need to 
do?” or, “How many more cores do I need to add in order to scale this 
application to the additional functionality I need?” It no longer involves 
bridging interfaces between disparate hardware elements like FPGAs 

Virtualization Architecture

Windows OS

Hypervisor

Processor
0

Processor
1

Processor
2

Processor
3

Windows OSRTOS Linux Linux

Quad Core System

Figure 2
Another approach to AMP is to 
implement virtualization with a 
hypervisor, which is a separate 

layer of software running directly 
on the hardware that divides the 

hardware among the operating 
systems.



Transforming 64-Bit Windows to Deliver Software-Only Real-Time Performance p. 10

and DSPs, or adapting code to parts with increased performance but 
different programming needs. It no longer involves bringing in different 
hardware specialists to create or upgrade a product. The team defines 
the performance in terms of a single programming language like C++.

And that leads to the additional advantage of having a single set of 
development tools, such as Windows Visual Studio, for the entire proj-
ect. Windows serves as the development environment for the entire 
system—Windows functions as well as real-time coding. And other 
Windows-based tools can be brought into the mix as well, such as 
requirements analysis, version control or static analysis tools to name 
a few. The user mode of the real-time subsystem also includes an 
RTX64 server console that connects to the RTSS. The real-time crew 
can also use their favorite real-time debuggers, profilers and analyz-
ers to tweak the real-time subsystem. And they can all communicate 
and consult with each other in the same terms. Nobody has to learn 
Verilog or a DSP coding language.

Connectivity—Internet and Real Time
With the rise of the Internet of Things, connectivity has become a must-
have in terms of linking devices to local networks, then to servers and 
ultimately to the Cloud. Internet connectivity is simply a given with Win-
dows, and it can be customized to exchange data and commands with 
the real-time processes as well as provide for a remote user interface 
for interacting with the systems from virtually anywhere. However, the 
Windows Internet connection itself is not real time.

Symmetric Multiprocessing (SMP) Architecture

Windows OS RTX64 SMP

Processor
1

Processor
2

Processor
3

Processor
4

Figure 3
RTX64 represents a real-time oper-
ating system extension to Windows 

and works with Windows as a sin-
gle operating system environment 

that uses the SMP approach to 
treat the multiprocessor hardware 

as a single shared resource.



Transforming 64-Bit Windows to Deliver Software-Only Real-Time Performance p. 11

Yet with the same systems running Windows and the RTX64 real-time 
extension environment, it is possible to add real-time Ethernet con-
nectivity in the form of EtherCAT, which is an Ethernet-based fieldbus 
system for control automation technology (CAT) as shown in Figure 
4. EtherCAT also provides for gateways to integrate existing field-
bus components such as CANopen or Profibus. EtherCAT runs un-
der RTX64 in software without the need for any specialized EtherCAT 
card plugged into the system bus. Running on one or more processor 
cores, EtherCAT communicates directly with whatever network in-
terface chip (NIC) is used in the system. The individual device can be 
selected during EtherCAT configuration.

EtherCAT represents an attractive alternative to the often complex and 
expensive wiring schemes associated with industrial control systems. 
A single cable can carry multiple control channels along with safety 
signals with Safety Inspection Level (SIL) 3 certification. In addition, 
multiple cores can be dedicated to EtherCAT functionality for truly rich 
control connectivity, all without the expense and power consumption 
of additional specialized hardware.

IntervalZero’s RTX64 has opened the world to Windows-based 
real-time systems with high-end vision, visualization and rich user in-
terfaces. It has done this by giving the developer the ability to trans-
form the functions of hardware components into software compo-
nents by harnessing the power of the underlying multicore processing 
hardware. For the OEM, there is nothing to inventory and the parts 
can be replicated infinitely. For the software team, there is no need for 
specialized knowledge of hardware such as DSPs and FPGAs. The code 
exists in a unified code base and can be managed as such.

HMI PLC

Shared Memory and SMP

Motion
Bus

I/O Bus

IPC

Vision
DSP
Logic

Safety
System

Soft
Motion

NIC NIC

EtherCAT
Master
Stack 1

EtherCAT
Master
Stack 2

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Figure 4
EtherCAT provides for gateways to 
integrate existing fieldbus compo-
nents such as CANopen or Profib-

us. EtherCAT runs under RTX64 in 
software without the need for any 

specialized EtherCAT card plugged 
into the system bus.



Transforming 64-Bit Windows to Deliver Software-Only Real-Time Performance p. 12

RTX64 integrates seamlessly into the Microsoft Visual Studio 
Integrated Development Environment, and deploys to a single inte-
grated Windows system. It extends Windows, delivering hard real-time 
precision with bounded latency, and it does so with multicore proces-
sors as a scalable natively SMP-enabled solution. Its positive effects 
on cost, time-to-market, inventory, user experience and raw system 
performance are revolutionary. ▪


