
How to Optimize the
Scalability & Performance of a
Multi-Core Operating System

Architecting a Scalable Real-Time Application
on an SMP Platform

2INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

 hen upgrading your hardware platform to

a newer and more powerful CPU with more,

faster cores, you expect the application to run

faster. More cores should reduce the average

CPU load and therefore reduce delays. In many

cases, however, the application does not run

faster and the CPU load is almost the same as

for the older CPU. With high-end CPUs, you may

even see interferences that break determinism.

Why does this happen, and what can you do

about it?

The answer: build for scalability. Unless an

application is architected to take advantage of a

multicore environment, most RTOS applications

on 1-core and 4-core IPCs will perform nearly

identically (contrary to the expectation that

an RTOS application should scale linearly and

execute 4 times faster on a 4 core IPC than

it does on a 1 core IPC.) Without a scalable

system, 3 of the 4 cores on the 4 core system

will not be utilized. Even if the application

seeks to use multiple cores, other architectural

optimizations involving memory access, IO,

caching strategies, data synchronization and

more must be considered for the system to

truly achieve optimal scalability.

While no system delivers linear scalability,

you can work to achieve each application’s

theoretical limit. This paper identifies the key

architectural strategies that ensure the best

scalability of an RTOS-based application. We

will explore CPU architectures, explain why

performance does not get the expected boost

with newer or more powerful cores, describe

how to reduce the effects of the interferences,

and provide recommendations for hardware

modifications to limit bottlenecks .

Overview

W

3INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

Introduction

This paper, written for RTOS users, addresses
a system where both real-time and non-real-
time applications run at the same time. To keep
determinism in the real-time applications, they
ideally should not share any hardware with the non-
real-time applications. But at the same time, it is
helpful to have memory spaces and synchronization
events available to both sides.

However, it is not possible to achieve both. Either
you have a dedicated real-time computer but must
rely on a bus protocol to exchange data with the
non-real-time applications, or you have both on the
same machine but they will share the CPU bus and
cache. Nowadays CPU cores are much faster than
memory and I/O access, so the interferences come
from competition in the access of these resources.

There is another important thing to consider when
using multiple cores. The different threads in an
application usually share variables, so access to
these variables has to be synchronized to ensure
the values are consistent. The CPU will do this
automatically if it is not handled in the code, but as
the CPU does not know the whole program, it will not
handle it optimally and this will create many delays.
These delays are the reason that an application will
not necessarily run faster on two cores than on one.

This paper will first examine the CPU architecture
relating to caches, memory and I/O access. Then
we will explain how threads interact and how
program design can help improve performances
with multiple cores. Finally, we will give examples of
practical problems and what can be done to solve or
minimize them.

Most of the technical information in this paper
is based on the excellent paper What Every
Programmer Should Know About Memory by Ulrich
Drepper at Red Hat. We recommend reading that
paper if you have the time.

4INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

1. CPU Architecture

In this model, all the cores are connected to the same
bus, called Front Side Bus (FSB), which links them
to the Northbridge of the chipset. This RAM and
its memory controller are connected to this same
Northbridge. All other hardware is connected to the
Southbridge which connects to the CPU through the
Northbridge.

From this design we can see that the Northbridge,
Southbridge and RAM are resources shared by all
the cores and therefore by both real-time and non-
real-time applications. Additionally, RAM controllers
only have one port, which means only one core can
access the RAM at a time.

The CPU frequencies have increased steadily for
many years without becoming more expensive but
it has not been the same for memory. Persistent
memory access (such as hard drives) is very slow, so
RAM was introduced to allow the CPU to execute
code and access data without having to wait for the
hard drive accesses.

Very fast Static RAM is available, but as it is extremely
expensive it can only be used in low amounts in
standard hardware (a few MB). What we commonly
call RAM in computers is Dynamic RAM, which is
much cheaper but also much slower than Static
RAM. Access to Dynamic RAM takes hundreds of
CPU cycles. With multiple cores all accessing this
Dynamic RAM, it is easy to see that the FSB and RAM
access are the biggest bottlenecks in the traditional
architecture.

1.1. Traditional Architecture: UMA (Uniform Memory Access)

CORE
1

RAM

PCI-e USB
SATA

CPU

NORTHBRIDGE

SOUTHBRIDGE

CORE
2

CORE
3

CORE
4

5INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

To remove the FSB and RAM as bottlenecks, a new architecture was designed with multiple Dynamic RAM
modules and multiple busses to access them. Each core could possibly have its own RAM module. The
Southbridge to access I/O can also be duplicated so different cores could use different busses to access
the hardware. For real-time applications, this would have the added advantage of no longer sharing these
resources with non-real-time applications.

Originally NUMA was developed for the
interconnection of multiple processors, but as
processors now have more and more cores, it has
been extended and used inside processors.

The NUMA design introduces new problems, as
variables are only located in a single RAM module
while multiple cores may need to access them.
Accessing variables attached to a foreign core may be
much slower and applications should be developed
specifically for this architecture to use it properly. We
would recommend only using this architecture for
applications developed for it, but when the number

of cores on a system exceeds four, the FSB of the
UMA architecture gets very easily overloaded and
may cause even more delays. Therefore, NUMA will
be the architecture for larger machines.

To gain the advantages of NUMA without its issues,
some machines are made with nodes of processors
sharing a RAM module. In that case applications only
using cores inside a single node would not see the
effects of NUMA and work normally.

We will not go into more details on this architecture
as it is not supported by RTX at the moment.

1.2. NUMA (Non-Uniform Memory Access) Architecture

CORE
1RAM RAM

RAMRAM

CPU
CORE

2

CORE
3

CORE
4

PCI-e

PCI-e

USB
SATA

USB
SATA

SOUTHBRIDGE

SOUTHBRIDGE

6INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

As mentioned previously, Dynamic RAM
access is slow for the CPU (hundreds
of cycles on average to access a word)
compared to access to Static RAM.
Therefore, CPUs now include Static RAM
used as cache and organized in multiple
levels. When a core needs to access
data, that data will be copied from the
main memory (Dynamic RAM) into its
closed cache so it can access it multiple
times faster.

1.3. Memory and Caches
QUAD CORE CPU WITH TWO LEVELS OF CACHE

CORE
1

CPU
CORE

2
CORE

3
CORE

4

L1d L1d L1d L1dL1i

L2 (LLC)

L1i L1i L1i

QUAD CORE CPU WITH THREE LEVELS OF CACHE, LEVEL 2 IS EXCLUSIVE

CORE
1

CPU
CORE

2
CORE

3
CORE

4

L1d L1d L1d L1dL1i

L2

L3 (LLC)

L2 L2 L2

L1i L1i L1i

QUAD CORE CPU WITH THREE LEVELS OF CACHE, LEVEL 2 IS SHARED BY CORE NODES

CORE
1

CPU
CORE

2
CORE

3
CORE

4

L1d L1d L1d L1dL1i

L2

L3 (LLC)

L2

L1i L1i L1i

7INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

The first level of cache (L1) has separate areas for instructions (the program code) and data (the variables);
other levels are unified. Higher levels of cache are larger and slower than the first level and may be exclusive
to a core or shared by multiple cores. The largest cache, also called Last Level Cache (LLC), is normally shared
by all cores. Average access times for each cache level given in CPU cycles is given in the table below.

As you can see, performance takes a huge hit any
time the CPU has to wait for the main memory to
be accessed because the data is not available in
the cache. This is called a “cache miss”. The main
memory data access is much faster if it is done in
bulk or in order. But the data and instruction access
in a program is rarely random, so the CPUs will try
to predict which memories will be used next and
load them to the cache in advance. This technique
is called prefetching and improves performance
significantly (~90% delay reduction).

To predict which data should be in the cache,
processors rely on two principles: temporal locality
and spatial locality.

	 •	 Temporal locality means that variables and 		
		 instructions are usually accessed multiple 		
		 times in a row. This is true especially with loops 	
		 and variables local to a function.

	 •	 Spatial locality means that variables defined 		
		 together are usually used together and the next
		 line of code most likely contains the next 		
		 instruction to execute.

Temporal locality is the reason for having caches.
Copying the data to a local buffer before using it is
only relevant if it will be accessed multiple times. To
take advantage of spatial locality and the fact that
RAM is accessed faster in bulk, data is not requested
and transferred in bytes but in cache lines which are
normally 64 bytes long. Also, the CPU will usually
prefetch the next line automatically. The work of the
programmer, detailed in section 2, is to make the
data and instruction order as predictable as possible
so that the prefetch works efficiently.

CACHE LEVEL
LEVEL 1
LEVEL 2
LEVEL 3

MAIN MEMORY

~ 3
~ 15
~ 20

~ 300

AVERAGE ACCESS TIME

8INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

Because caches are expensive they are usually small,
so not all the data and instructions related to an
application can be in a cache. Also, it is shared by
all the applications running on the cores attached to
this cache. This means that when an application or
thread is loading too much data, it will evict older
data that another thread or application may still
want to use and need to reload. The more code that
is executing on the core, the more likely instructions
will be evicted when thread switching. This fight for
cache is called “memory contention”.

The LLC is shared by both real-time and non-real-time
applications when the system is a single socket or a
multiple socket system is configured with a socket
having both real-time and non-real-time cores. As
a result, non-real-time applications can affect the
performance of the real-time application when they
use a large amount of memory, by running an HD
video for example. If the amount of data used by

an application or thread is small, it may be possible
to choose a CPU with enough cache to keep that
whole data in the exclusive caches where it will not
be affected by other applications.

The FSB which accesses the main memory is very
slow compared to the CPU, so heavy data loading
from a single core could use the whole bandwidth
alone. This is called “bus contention” and will start
being visible when the CPU has four or more cores.
As this bus is the real bottleneck, it is usually better
to spend money on a faster RAM and Chipset bus
than on a faster CPU. A faster CPU will usually just
wait longer.

1.4. Bottlenecks

The main reason why an application does not run
faster on two cores than one is data synchronization.
Code serialization can also play a role in execution
latency. As mentioned previously, cores always
access data through their lowest level of cache which
is exclusive. This means that if a variable is accessed
by two cores, it must be present in the cache of both
cores, but when its value is modified it has to be
updated in the cache of both cores. The CPU must
ensure data consistency for the whole system which
can cause huge delays, generally as a result of one
core needing to snoop data in the cache of another
core to ensure data integrity.

To maintain this consistency the CPU uses the MESI
protocol, which defines the state of a cache line.

	 •	MODIFIED: The value has been modified by 		
		 this core so this is the only valid copy in the 		
		 system.

	 •	EXCLUSIVE: This core is the only one using this 	
		 variable. It does not need to signal changes.

	 •	SHARED: This variable is available 			
		 in multiple caches. Other cores should be 		
		 informed if it changes.

	 •	INVALID: No variable has been loaded or its 		
		 value was changed by another core.

1.5. Data Synchronization

9INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

The status of each cache line is maintained by
each core. To do this, they have to observe all data
requests to the main memory and inform other
cores that they already have a variable being read
or have modified its value. Every time a core wants
to access a variable that is modified in the cache of

another core, the new value has to be sent to the
main memory and the reading core. Access to this
value becomes as slow as if there were no cache. If
there is a variable written by one core often and read
by another, here is what will happen:

In this case the Core 2 has to read the value from
the main memory every time, which removes the
advantage of the cache. And the Core 1 has to send
a “Request For Ownership” (RFO) on the FSB every
time it modifies the value and then update the main
memory every time the Core 2 requests the value.

Access to this value will be much slower when the
two threads are on different cores compared to both
threads running on a single core and it will add traffic
to the FSB.

There is much less of a problem for instructions
because they are normally read-only. In this case
there is no need to know how many cores are using
it. Self-modifying code exists but it is very dangerous
and rarely used, so we will not address it here.

CORE 1 STATUSACTION
Core 1 reads the value

Core 1 modifies the value

Core 1 modifies the value

Core 2 reads the value

Core 2 reads the value

Core 2 reads the value

EXCLUSIVE

MODIFIED

MODIFIED

SHARED

SHARED

SHARED

INVALID

INVALID

INVALID

SHARED

SHARED

SHARED

CORE 2 STATUS

10INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

Multiple cores and multiple threads on a single core
seem to have the same use but the way they share
resources is very different. As a result, the way they
should be used is almost opposite.

With multiple cores, the level 1 cache is duplicated
and each core has its own. This means that more
cache is available on the system but they need to be
synchronized.

With hyperthreading, the two threads share the
same level 1 cache, so in the worst case would only
have half of it available.

So, with multiple cores programmers must limit
the amount of shared data between the threads
on each core to avoid synchronization delays. With
hyperthreading, the level 1 cache is shared between

the hyper threads. This means if the data used by
each thread is different it will cause cache contention
and data will have to be loaded from the main
memory much more often. In this case performance
will be improved only if independent operations are
made on the same data set. This is usually a special
situation, so in most cases hyperthreading will not
improve performance and we suggest disabling it.
Also, since both the core and level 1 cache are shared
between the two hyper threads, both of them should
be used by real-time applications or non-real-time
applications.

1.6. Multi-Core and Hyperthreading

CORE 1

THREAD 0

L1I

L1D

L2

THREAD 1

11INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

Access to the I/O, which can be PCI-e, USB or any
other type, is controlled by the CPU instructions.
This means that when a device such as a NIC signals
updated data with an interrupt, the CPU has to query
for the data and send it to the main memory. This
adds a lot of unnecessary load on the FSB. For high-

speed busses, the Direct Memory Access (DMA)
feature was developed. Using DMA a device will
signal the CPU that data was updated and directly
send this data to the main memory without needing
any action from the CPU.

If the CPU plans to immediately use this data, there
is a new feature that can be used called Direct Cache
Access (DCA) where the data would be copied to
both the main memory and CPU cache.

1.7. DMA (Direct Memory Access)

CORE
1

RAM

DMA

PCI-e USB
SATA

CPU

NORTHBRIDGE

SOUTHBRIDGE

CORE
2

CORE
3

CORE
4

12INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

2. Memory & Multicore Programming

Caching is completely controlled by the processor
and cannot be modified by the programmer. But the
way it is implemented may have a huge impact on the
program performance. Data available in the different
caches may be different or the data in lower-level
caches may be duplicated in higher-level caches.
Having this data duplicated makes the higher-level
cache seem smaller, but if two cores access the same
variable shared by that higher-level cache, then they
can use it to synchronize values instead of going all
the way to the main memory.

We can assume that the cache is always full as this
will be true once the computer has been running
for a few minutes. So, any data added to the cache

will cause another cache line to be “evicted”, which
means copied back to the next level of cache which
will in turn send a value back to the main memory
if it did not already contain the evicted value. By
default, the oldest used value in the cache will be
evicted, although some newer processors have more
complex calculations to choose which value to evict.
Processors have memory management instructions
that can be used to force or bypass these cache
features, but using these functions is very hardware-
and application-specific and requires development
time. These functions will not be described here but
are explained in Ulrich Drepper’s paper referenced
in the introduction.

2.1. Caching Methods

13INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

As described in section 1.3, there are multiple cache
architectures available which impact performance.
The selection of which core each thread should run
on should depend on how the threads interact and
what caches are available.

Ideally, threads that share many variables should run
on the same core and threads running on different
cores should not share variables. But if this was
possible, there would only be small applications
running on a single core. Bigger applications require
multiple cores to run different modules and still need
to share data and synchronize modules.

Programmers therefore need to identify which
variables are shared or not and try to keep as many
local variables in the exclusive cache while having
shared caches to contain shared variables. In the
specific case of RTX where there are two operating
systems each with their own cores, an ideal situation
would be to have three levels of cache: the level
1 exclusive to each core, the level 2 separated in
RTX core cache and Windows core cache, and the
last level cache shared by all cores. This way the
Windows applications cannot pollute the RTX level
2 cache and threads on the different RTX cores can
share variables without relying on hardware which
is shared with the non-real-time space. This ideal
situation, however, is only valid when the most
commonly used variables in the RTX applications do
not exceed the size of the level 2 cache.

2.2. Exclusive and Shared Caches

CORE
1

CORE
2

CORE
3

CORE
4

L1d L1d L1d L1dL1i

L2 L2

L3 (LLC)

WINDOWS RTX

L1i L1i L1i

14INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

To take advantage of the multi-core and cache
optimizations, different variable types have to be
identified and handled differently. The different
variable types are:

	 •	Variables used by a single core. These variables 	
		 should only appear in one level 1 cache. While 	
		 they can be evicted to L2/LLC, they cannot 		
		 appear in multiple L1 caches.

	 •	Real-only variables (initialized at the beginning 	
		 and then never changed). These variables can 		
		 be shared by multiple cores without
		 performance issues.

	 •	Mostly read-only variables.

	 •	Often modified variables. Variables that are 		
		 often modified by multiple cores or by a core 		
		 while in a shared state will have slow access, 		
		 so they should be grouped together to avoid 		
		 interfering with other variables.

There are compiler definitions that can ensure
alignments and explicitly indicate the type of
variables but improvements can be achieved just by
declaring the variables properly.

	 •	Variables are accessed by cache lines of 64 		
		 bytes, so it is best to make sure only one type 		
		 of variable is available in a cache line. To 		
		 achieve this, variables can be grouped in 		
		 structures whose length is a multiple of
		 128 bytes.

	 •	The total size of the structures should be as 		
		 small as possible and variables will be aligned 	
		 in structures (we can assume a 64-bit alignment 	
		 on 64-bit systems) so smaller variable types 		
		 should be grouped together. For example, two 	
		 int or four short.

	 •	Prefetching will load the next cache line so the 	
		 first variable to be used should be at the 		
		 beginning of the structure and variables should 	
		 be declared in the order they are used.

	 •	“Mostly read-only” and “Often modified” 		
		 variables that are consumed together should
		 be 	grouped together so that they can all 		
		 be updated in a single operation.

If these rules are not followed you may have an
unexpected situation called “false sharing”. This
happens when a variable that should be read-only
or consumed by a single core is marked invalid
because it is on the same cache line as a variable
modified by a different core. In that case access to
the first variable will be slow even though it should
not be. Having the different types of variables in
different cache lines ensures this situation does not
happen.

Access to shared and often modified variables may
be slow and even subject to interference if the
FSB is overloaded. These variables should not be
accessed by threads which are very deterministic
and require small jitters. To achieve this, it may be
useful to create core specific relay variables that are
accessed by the highly deterministic thread and let a
lower priority thread synchronize the values with the
shared variables.

2.3. Optimizing Variable Declaration

15INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

When work is done on big data sets which exceed
the cache size, it may be useful to write the code in
a way that optimizes cache use. These operations
could be picture analysis or other operations on big
matrices. This section should only be considered if
the matrix size is too big to fit in the cache. Since
the data will have to load from the main memory, it
should be consumed in a way that takes advantage
of cache and RAM technologies:

	 •	If possible, the data set should be broken 		
		 into smaller sets that fit in the cache and 		
		 all operations on a single set should 			
		 be done before moving to the next set.

	 • 	The data should be accessed in the order it is 		
		 defined in the memory so that prefetching 		
		 reduces the loading time.

We will use the multiplication of two square
matrices A and B, each with 2000 rows and
columns, as an example to show possible
modifications to the code.

A matrix is defined in the memory as an array
of arrays. So, variables are organized in the
following way:

The standard code to accomplish the multiplication
would be very simple and use 3 for loops:

for (int i = 0; i < 2000; i++) {
	 for (int j = 0; j < 2000; j++) {
		 for (int k = 0; k < 2000; k++)
			 Result[i][j] += A[i][k] * B[k][j];
	 }
}

With this code the matrices are consumed in
different ways:

2.4. Optimizing Variable Access

A:

B:

16INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

With this simple logic, the data in the first matrix is
processed only once and in the order it is located
in the memory. But the data in the second matrix
is loaded many times and in an order which looks
random to the processor.

In such cases the programmer should try to break
the calculations in smaller datasets that fit in the L1d
cache and try to finish using a dataset before moving
to the next one.

int SetSize = DataSetSize / CellDataSize; // 64 / 8
int Iteration = 2000 / SetSize;
for (int i = 0; i < Iteration; i+= SetSize) {
	 for (int j = 0; j < Iteration; j+= SetSize) {
		 for (int k = 0; k < Iteration; k+= SetSize) {
			 for (int i2 = 0; i2 < SetSize; i2++) {
				 for (int j2 = 0; j2 < SetSize; j2++) {
					 for (int k2 = 0; k2 < SetSize; k2++)
						 Result[i][j+SetSize*i2+j2] +=
							 A[i][k+SetSize*i2+k2] * B[k][j+SetSize*k2+j2];
				 }
			 }
		 }
	 }
}

17INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

To simplify the equation, pointers can be used to
represent the matrices:

To simplify the equation, pointers can be used to
represent the matrices:

Such code modifications can
reduce the calculation time
by 75%, which can make a big
difference. But as they make
the code more complex and
introduce new variables, they
are only useful when the data
processed is large enough that
the improvements outweigh
the extra development time.

int SetSize = DataSetSize / CellDataSize; // 64 / 8
int Iteration = 2000 / SetSize;

for (int i = 0; i < Iteration; i+= SetSize) {
	 for (int j = 0; j < Iteration; j+= SetSize) {
		 for (int k = 0; k < Iteration; k+= SetSize) {
			 for (int i2 = 0; i2 < SetSize; i2++) {
				 R2 = &Result[i][j + SetSize * i2];
				 A2 = &A[i][k + SetSize * i2];
				 for (int j2 = 0; j2 < SetSize; j2++) {
					 for (int k2 = 0; k2 < SetSize; k2++) {
						 B2 = &B[k][j + SetSize * k2];
						 R2[j2] += A2[k2] + B2[j2];
					 }
				 }
			 }
		 }
	 }
}

for (int i = 0; i < Iteration; i+= SetSize) {
	 for (int j = 0; j < Iteration; j+= SetSize) {
		 for (int k = 0; k < Iteration; k+= SetSize) {
			 for (int i2 = 0; i2 < SetSize; i2++) {
				 R2 = &Result[i][j + SetSize * i2];
				 A2 = &A[i][k + SetSize * i2];
				 for (int k2 = 0; k2 < SetSize; k2++) {
					 B2 = &B[k][j + SetSize * k2];
					 for (int j2 = 0; j2 < SetSize; j2++)
						 R2[j2] += A2[k2] + B2[j2];
				 }
			 }
		 }
	 }
}

18INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

There is much less work to be done with the source
code. The compiler knows the proper ordering and
optimization rules and will apply them automatically.
But any error in prediction for the instructions will
cause many more delays than for the data because
instructions need to be decoded before they are
used by the CPU. Therefore, if possible the code
should limit prediction errors.

Branching code should be avoided in the default/
normal execution paths. When the expected
conditions are met in the code, it should not cause a
branch or jump. When a condition has a most likely
value, the most likely case code should follow as it will
be the one pre-loaded. This happens, for example,
when checking for errors or incorrect parameters.
We can expect that things work properly and the
data provided is valid most of the time. In that case,
normal operation should follow the condition and
the error handling code can be located further away.

There is another optimization that will happen in
the CPU called “Out Of Order execution” (OOO).
This is when the CPU detects that two instructions
are unrelated and the second execution can be
started first to save processing time. This normally
does not impact performance unless the second
instruction will use a resource (such as reading from
the main memory) that the first instruction will also
need, thus notably delaying the execution of the first
instruction. Memory management instructions of the
CPU can prevent OOO from happening if it causes
a problem, but once again this will require a precise
understanding of the hardware and how memory
management instructions work.

There are many pieces of an application, including
libraries used, that are called by multiple threads
running on different cores. There is no way to avoid
serialized code completely without duplicating most
of the application and OS code which would hurt
performances even more.

To avoid concurrent access to serialized parts of
the code, the OS uses an internal mutex called a
spinlock. A spinlock allows a thread to wait for the
needed resource without releasing the core to
another thread. Spinlocks are generally only used
for very short waiting periods, much shorter than the
scheduler’s timer period.

Recent high-end processors have added a new
feature to reduce the impact of serialized code:
transactional registers. Operations done in
transactional registers are not applied to the normal
registers immediately. This means that instead of
waiting for the resource using a spinlock, the second
thread performs the calculations in the transactional
registers and applies them when the resource is
released only if the registers read were not modified
in the meantime. In over 90% of cases, the read
registers will not have been modified and the second
thread will have run without waiting.

2.5. Optimizing Code Predictability

2.6. Serialized Code

19INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

3. Practical Issues

A real-time application was too slow or caused the CPU load to be close to 100%
so an extra RTX core was added to increase performance. But performance did not
improve with the extra core or even decreased.

This is most likely due to data synchronization delays. If the application was not
developed for a multi-core environment and many variables are shared by the
threads on different cores, they will render caches useless and performance will likely
decrease due to constant main memory access or cache coherency mechanisms.

The best solution is most likely to modify the application following the guidelines in
section 2 of this paper.

To improve performance without modifying the software, the approach of adding
cores is not workable with this specific application. Increasing the frequency of the
single core used and possibly the frequency of the RAM would be more efficient.

3.1. Performance Decrease in Multicore

ISSUE

CAUSE

POSSIBLE SOLUTIONS

20INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

The real-time application was modified to run on multiple cores. The threads on each
core only share a limited number of variables and yet these modifications do not
seem to have improved performance significantly.

If separating the variables used by different cores did not improve performance, there
is probably false sharing happening. As explained in section 2.3, you need to make
sure that variables that are not shared are not on the same cache line as variables
which are shared. Variables are not loaded individually by the cache, they are loaded
as cache lines of 128 bytes.

Review the declaration of the variables as explained in section 2.3. Group the different
sort of variables in different structures that take whole cache lines to make sure they
are separated in the memory and will not interfere.

3.2. Separating Thread Variables Did Not Improve Performance

ISSUE

CAUSE

POSSIBLE SOLUTIONS

21INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

Two independent applications have been set up to run on two different RTX cores, but
when one of them has heavy calculations it causes latency in the other.

Two different cores still share resources even if everything has been done to separate
them. Even if the I/O used are on separate PCI-e lines and there is no memory shared,
the last level cache (LLC) of the CPU is still used by both applications and so is the
front side bus (FSB) to access the I/O and RAM. There can be contention in either the
LLC or the FSB or both.

When an application does heavy calculations, it likely also uses a large amount of
data. This data will pollute the LLC and force the other application to request the data
from the RAM again. Loading this data will also create a lot of traffic on the FSB which
might get congested. If the other application also needs to access RAM data, these
accesses will be longer.

A first solution would be to limit how fast calculations are performed on the first
application to prevent it from polluting the cache and overloading the FSB. Another
solution is to get a CPU with more cache and a RAM module with higher frequency to
reduce the impact of the heavy calculations.

On a few very high-end processors, Intel has developed a technology called “Cache
Allocation Technology” (CAT) which reserves cache space for a specific processor. Intel
also announced a technology called “Memory Bus Allocation” (MBA) which reserves
an FSB bandwidth for a specific core. This technology is only currently available on
the latest series of high-end processors. It is supported by RTX64 3.4.

3.3. Processes on Different RTX64 Cores Interfere

ISSUE

CAUSE

POSSIBLE SOLUTIONS

22INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

An RTX application was deployed on a new CPU which is faster and has more cores. The
new cores have been assigned to Windows. There has been no change to either the
Windows or RTX side of the system and yet there are now delays in RTX applications.

This is caused by bus contention. The front side bus (FSB) which connects the CPU
cores to the RAM is a limited resource much slower than CPU cores. It is shared by
all cores and any single core can load it completely. There is most likely a Windows
application in the system that consumes a lot of data. This application accesses the
data through the FSB as fast as possible using all cores available to Windows. With
more Windows cores the ratio of FSB bandwidth given to the RTX cores has been
reduced, increasing the delays to access the main memory.

The ideal solution would be to move to a NUMA platform or reserve bandwidth
for RTX. But changing the platform to NUMA would require major modifications
to the applications and NUMA is not supported by RTX yet. Intel has announced a
technology to allocate bandwidth called “Memory Bandwidth Allocation” (MBA),
which is supported by RTX64 3.4.

The currently available solutions are to limit the number of system cores to avoid the
contention (contention becomes very important when there are more than four cores)
or to increase the FSB bandwidth. If possible, our recommendation is to purchase
faster RAM and ensure that the Chipset supports this faster frequency.

3.4. More Windows Cores Cause Higher Latency

ISSUE

RTX64 3.4 Support for CAT and MBA

CAUSE

POSSIBLE SOLUTIONS

Intel has added features to its newer high-end processors such as cache allocation technology (CAT),
memory bus allocation (MBA) and transactional registers to reduce the performance impact and protect
critical threads against interferences. RTX64 3.4 now supports these new features by linking them to the
priority and affinity settings of real-time threads to enable developers to use newer processors without
needing to make changes to their program.

23INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

Conclusion

A real-time operating system allows developers to
write real-time applications the same way they write
Windows applications and handles scheduling and
separation of resources with Windows. But some of
the resources that are still shared, like the processor
cache and front-side bus bandwidth, become
bottlenecks of the system in recent processors.
This creates performance issues that often seem
inexplicable or counterintuitive and impacts the
scalability of the system as a whole.

In this paper, we examined what causes these
performance issues, how hardware choices can
improve performance, and workarounds to
help resolve the issues. We also introduced new
technology, Intel’s CAT and MBA, that further
improves performance and is now supported by
RTX64 3.4. With this information and these
techniques, you can optimize applications for
multicore systems and improve scalability for
improved results across the organization.

For more information about how to solve performance challenges or the latest
features supported by RTX64, please contact your IntervalZero rep or get in touch.

24INTERVALZERO.COMSALES@INTERVALZERO.COM 781-996-4481

How to Optimize the Scalability & Performance of a Multi-Core Operating System

Selecting a Hardware Platform

Follow these guidelines to determine which components will impact your system the most.

What a real-time system requires the most is stability,
not burst performance or power saving. Atom
processors provide good performance while mobile
processors will never be very stable. Features like
hyperthreading, boost and sleep states should be
disabled if available.

Independent RTX applications should use separate
cores and have separate cores from Windows. But
to avoid contention issues, we recommend limiting
the number of cores to four or being sure that no
Windows applications will have bursts of data
consumption.

The size and distribution of the cache can often have
more impact than the CPU frequency. Generally,
the bigger the cache, the faster the code will be
executed, although as cache size increases, access
latency tends to increase as well. If the cache size
is still smaller than the dataset size and many RAM
accesses are used, larger cache will reduce overall
delays. If the cache size is already larger than the
dataset size, then increasing it is counterproductive.

If you have an RTX application that uses multiple
cores, having a level 2 cache shared only by the RTX
cores may be helpful (see section 1.3).

With a heavy application, the RAM access will
be the bottleneck. The size of the RAM is not the
issue. You need to make sure all the data used by
the applications can fit in it; any extra space will
not change anything. The frequency of the RAM &
Chipset bus, however, is critical and will determine
how fast the CPU can access all the data used. For
this reason, you should consider as fast a frequency
as you can afford.

Any possible bottleneck and conversion delay should
be avoided as there will be enough limitations from
the RAM access side.

Any device linked to RTX should have its own PCI-e
line to avoid delays. New processors only support
PCI-e so PCI devices are actually grouped and linked
to PCI-e lines by hardware chips. This should be
avoided if possible as this extra chip will introduce
uncontrolled delays. Only devices directly connected
to the chipset will deliver good performance.

All sleep and power saving options should be
disabled for the relevant PCI-e lines. These options
are in the BIOS and usually now modifiable by the
user, so a correctly configured BIOS should be
requested from the computer vendor.

a. Processor

b. Chipset & RAM c. I/O Devices

