How to Optimize the
Scalability & Performance of a
Multi-Core Operating System

Architecting a Scalable Real-Time Application
on an SMP Platform

IntervalZero



Overview

When upgrading your hardware platform to
a newer and more powerful CPU with more,
faster cores, you expect the application to run
faster. More cores should reduce the average
CPU load and therefore reduce delays. In many
cases, however, the application does not run
faster and the CPU load is almost the same as
for the older CPU. With high-end CPUs, you
may even see interferences that break
determinism. Why does this happen, and

what can you do about it?

The answer: build for scalability. Unless an
application is architected to take advantage
of a multicore environment, most RTOS
applications on 1-core and 4-core IPCs will
perform nearly identically (contrary to the
expectation that an RTOS application should
scale linearly and execute 4 times faster on
a 4 core IPC than it does on a 1 core IPC.)

Without a scalable system, 3 of the 4 cores

on the 4-core system will not be utilized.

Even if the application seeks to use multiple

cores, other architectural optimizations

involving memory access, 1/O, caching
strategies, data synchronization and more
must be considered for the system to truly

achieve optimal scalability.

While no system delivers linear scalability,
you can work to achieve each application’s
theoretical limit. This paper identifies the key
architectural strategies that ensure the best
scalability of an RTOS-based application. We
will explore CPU architectures, explain why
performance does not get the expected boost
with newer or more powerful cores, describe
how to reduce the effects of the interferences,
and provide recommendations for hardware

modifications to limit bottlenecks.

IntervalZero

I Z How to Optimize the Scalability & Performance of a Multi-Core Operating System

SALES@INTERVALZERO.COM 781-996-4481 INTERVALZERO.COM 2



mailto:SALES@INTERVALZERO.COM

. Introduction o

This paper, written for RTOS users, addresses
a system where both real-time and non-real-
time applications run at the same time. To keep
determinism in the real-time applications, they
ideally should not share any hardware with the non-
real-time applications. But at the same time, it is
helpful to have memory spaces and synchronization
events available to both sides.

However, it is not possible to achieve both. Either
you have a dedicated real-time computer but must
rely on a bus protocol to exchange data with the
non-real-time applications, or you have both on the
same machine but they will share the CPU bus and
cache. Nowadays CPU cores are much faster than
memory and I/O access, so the interferences come
from competition in the access of these resources.

There is another important thing to consider when
using multiple cores. The different threads in an
application usually share variables, so access to
these variables has to be synchronized to ensure
the values are consistent. The CPU will do this
automatically if it is not handled in the code, but as
the CPU does not know the whole program, it will not
handle it optimally and this will create many delays.
These delays are the reason that an application will
not necessarily run faster on two cores than on one.

How to Optimize the Scalability & Performance of a Multi-Core Operating System

This paper will first examine the CPU architecture
relating to caches, memory and 1/O access. Then
we will explain how threads interact and how
program design can help improve performances
with multiple cores. Finally, we will give examples of
practical problems and what can be done to solve or
minimize them.

Most of the technical information in this paper
is based on the excellent paper What Every
Programmer Should Know About Memory by Ulrich
Drepper at Red Hat. We recommend reading that
paper if you have the time.

I Z SALES@INTERVALZERO.COM

781-996-4481

INTERVALZERO.COM 3

IntervalZero


mailto:SALES@INTERVALZERO.COM

° 1. CPU Architecture

0003

H
H

SOUTHBRIDGE

NORTHBRIDGE

USB
> (saTA

1.1. Traditional Architecture: UMA (Uniform Memory Access)

In this model, all the cores are connected to the
same bus, called Front Side Bus (FSB), which links
them to the Northbridge of the chipset. This
RAM and its memory controller are connected to
this same Northbridge. All other hardware is
connected to the Southbridge which connects to
the CPU through the Northbridge.

From this design we can see that the Northbridge,
Southbridge and RAM are resources shared by all
the cores and therefore by both real-time and non-
real-time applications. Additionally, RAM controllers
only have one port, which means only one core can
access the RAM at a time.

How to Optimize the Scalability & Performance of a Multi-Core Operating System

The CPU frequencies have increased steadily for
many years without becoming more expensive,
but it has not been the same for memory.
Persistent memory access (such as hard drives) is
very slow, so RAM was introduced to allow the
CPU to execute code and access data without
having to wait for the hard drive accesses.

Very fast Static RAM is available, but as it is
extremely expensive it can only be used in low
amounts in standard hardware (a few MB). What
we commonly call RAM in computers is Dynamic
RAM, which is much cheaper but also much
slower than Static RAM. Access to Dynamic RAM
takes hundreds of CPU cycles. With multiple
cores all accessing this Dynamic RAM, it is easy to
see that the FSB and RAM access are the biggest
bottlenecks in the traditional architecture.

I Z SALES@INTERVALZERO.COM

781-996-4481

INTERVALZERO.COM 4

IntervalZero


mailto:SALES@INTERVALZERO.COM

1.2. NUMA (Non-Uniform Memory Access) Architecture

To remove the FSB and RAM as bottlenecks, a new architecture was designed with multiple Dynamic RAM
modules and multiple buses to access them. Each core could possibly have its own RAM module. The
Southbridge to access /0 can also be duplicated so different cores could use different buses to access
the hardware. For real-time applications, this would have the added advantage of no longer sharing these

resources with non-real-time applications.

Originally NUMA was developed for the
interconnection of multiple processors, but as
processors now have more and more cores, it has
been extended and used inside processors.

The NUMA design introduces new problems, as
variables are only located in a single RAM module
while multiple cores may need to access them.
Accessing variables attached to a foreign core
may be much slower and applications should be
developed specifically for this architecture to use
it properly. We would recommend only using this
architecture for applications developed for it, but
when the number of cores on a system exceeds

How to Optimize the Scalability & Performance of a Multi-Core Operating System

SOUTHBRIDGE

SOUTHBRIDGE

USB
SATA

H.
H‘

USB
SATA

four, the FSB of the UMA architecture gets very
easily overloaded and may cause even more
delays. Therefore, NUMA will be the architecture
for larger machines.

To gain the advantages of NUMA without its issues,
some machines are made with nodes of processors
sharing a RAM module. In that case applications
only using cores inside a single node would not
see the effects of NUMA and work normally.

We will not go into more details on this architecture
as itis not supported by RTX64 at the moment.

I Z SALES@INTERVALZERO.COM

781-996-4481

INTERVALZERO.COM 5

IntervalZero


mailto:SALES@INTERVALZERO.COM

1.3. Memory and Caches

QUAD CORE CPU WITH TWO LEVELS OF CACHE

As mentioned previously, Dynamic RAM
access is slow for the CPU (hundreds

CPU
of cycles on average to access a word)
compared to accessing Static RAM. @ @ @ @
Therefore, CPUs now include Static RAM

used as cache and organized in multiple Lid| L1i Lid | L1i Lid | L1i Lid | L1i
levels. When a core needs to access

: . L2 (LLC)
data, that data will be copied from the
main memory (Dynamic RAM) into its
closed cache so it can access it multiple

times faster.

QUAD CORE CPU WITH THREE LEVELS OF CACHE, LEVEL 2 IS EXCLUSIVE

XY N

L1d L1i Lid | L1i L1d | L1i L1d | L1i
L2 L2 L2 L2

L3 (LLC)

QUAD CORE CPU WITH THREE LEVELS OF CACHE, LEVEL 2 IS SHARED BY CORE NODES

XY N

L1d LTi L1d | L1i L1d | L1i L1d | L1i

L3 (LLC)

I Z How to Optimize the Scalability & Performance of a Multi-Core Operating System IntervalZero

SALES@INTERVALZERO.COM 781-996-4481 INTERVALZERO.COM 6


mailto:SALES@INTERVALZERO.COM

The first level of cache (L1) has separate areas for instructions (the program code) and data (the variables);
other levels are unified. Higher levels of cache are larger and slower than the first level and may be exclusive
to a core or shared by multiple cores. The largest cache, also called Last Level Cache (LLC), is
normally shared by all cores. Average access times for each cache level given in CPU cycles is given in
the table below.

CACHE LEVEL AVERAGE ACCESS TIME

LEVEL 1 ~3

LEVEL 2 ~15

LEVEL 3 ~20
MAIN MEMORY ~ 300

As you can see, performance takes a huge hit any
time the CPU has to wait for the main memory to
be accessed because the data is not available in
the cache. This is called a “cache miss”. The main
memory data access is much faster if it is done in
bulk or in order. But the data and instruction access
in a program is rarely random, so the CPUs will try
to predict which memories will be used next and
load them to the cache in advance. This technique
is called prefetching and improves performance
significantly (~90% delay reduction).

To predict which data should be in the cache,
processors rely on two principles: temporal locality
and spatial locality.

- Temporal locality means that variables and
instructions are usually accessed multiple
times in a row. This is true especially with loops
and variables local to a function.

- Spatial locality means that variables defined
together are usually used together and the next
line of code most likely contains the next
instruction to execute.

How to Optimize the Scalability & Performance of a Multi-Core Operating System

Temporal locality is the reason for having caches.
Copying the data to a local buffer before using it is
only relevant if it will be accessed multiple times. To
take advantage of spatial locality and the fact that
RAM is accessed faster in bulk, data is not requested
and transferred in bytes but in cache lines which are
normally 64 bytes long. Also, the CPU will usually
prefetch the next line automatically. The work of the
programmer, detailed in section 2, is to make the
data and instruction order as predictable as possible
so that the prefetch works efficiently.

I Z SALES@INTERVALZERO.COM

781-996-4481

INTERVALZERO.COM 7

IntervalZero


mailto:SALES@INTERVALZERO.COM

1.4. Bottlenecks

Because caches are expensive they are usually small,
so not all the data and instructions related to an
application can be in a cache. Also, it is shared by
all the applications running on the cores attached to
this cache. This means that when an application or
thread is loading too much data, it will evict older
data that another thread or application may still
want to use and need to reload. The more code that
is executing on the core, the more likely instructions
will be evicted when thread switching. This fight for
cache is called “memory contention”.

The LLC is shared by both real-time and non-
real-time applications when the system is a single
socket or a multiple socket system is configured
with a socket having both real-time and non-real-
time result,
applications can affect the performance of the
real-time application when they use a large
amount of memory, by running an HD video for

cores. As a non-real-time

1.5. Data Synchronization

The main reason why an application does not run
faster on cores than data
synchronization. Code serialization can also play
a role latency. As mentioned
previously, cores always access data through
their lowest level of cache which is exclusive.
This means that if a variable is accessed by two
cores, it must be present in the cache of both cores,
but when is modified it has to be
updated in the cache of both cores. The CPU must
ensure data consistency for the whole system which
can cause huge delays, generally as a result of one
core needing to snoop data in the cache of another
core to ensure data integrity.

two one is

in execution

its value

How to Optimize the Scalability & Performance of a Multi-Core Operating System

example. If the amount of data used by an
application or thread is small, it may be possible to
choose a CPU with enough cache to keep that
whole data in the exclusive caches where it will not
be affected by other applications.

The FSB which accesses the main memory is very
slow compared to the CPU, so heavy data loading
from a single core could use the whole bandwidth
alone. This is called “bus contention” and will start
being visible when the CPU has four or more cores.
As this bus is the real bottleneck, it is usually better
to spend money on a faster RAM and Chipset bus
than on a faster CPU. A faster CPU will usually just
wait longer.

To maintain this consistency the CPU uses the MESI
protocol, which defines the state of a cache line.

- MODIFIED: The value has been modified by
this core so this is the only valid copy in the
system.

- EXCLUSIVE: This core is the only one using this
variable. It does not need to signal changes.

- SHARED: This variable is available
in multiple caches. Other cores should be
informed if it changes.

- INVALID: No variable has been loaded or its
value was changed by another core.

I Z SALES@INTERVALZERO.COM

781-996-4481

INTERVALZERO.COM 8

IntervalZero


mailto:SALES@INTERVALZERO.COM

The status of each cache line is maintained by
each core. To do this, they have to observe all data
requests to the main memory and inform other
cores that they already have a variable being read
or have modified its value. Every time a core wants
to access a variable that is modified in the cache of

another core, the new value has to be sent to the
main memory and the reading core. Access to this
value becomes as slow as if there were no cache. If
there is a variable written by one core often and read
by another, here is what will happen:

ACTION CORE 1 STATUS CORE 2 STATUS

Core 1 reads the value EXCLUSIVE INVALID
Core 2 reads the value SHARED SHARED
Core 1 modifies the value MODIFIED INVALID
Core 2 reads the value SHARED SHARED
Core 1 modifies the value MODIFIED INVALID
Core 2 reads the value SHARED SHARED

In this case the Core 2 has to read the value from
the main memory every time, which removes the
advantage of the cache. And the Core 1 has to send
a “Request For Ownership” (RFO) on the FSB every
time it modifies the value and then update the main
memory every time the Core 2 requests the value.

Access to this value will be much slower when the
two threads are on different cores compared to both
threads running on a single core and it will add
traffic to the FSB.

How to Optimize the Scalability & Performance of a Multi-Core Operating System

There is much less of a problem for instructions
because they are normally read-only. In this case
there is no need to know how many cores are using
it. Self-modifying code exists but it is very
dangerous and rarely used, so we will not address
it here.

I Z SALES@INTERVALZERO.COM

781-996-4481

INTERVALZERO.COM 9

IntervalZero


mailto:SALES@INTERVALZERO.COM

1.6. Multi-Core and Hyperthreading

Multiple cores and multiple threads on a single core
seem to have the same use but the way they share
resources is very different. As a result, the way they
should be used is almost opposite.

CORE 1

THREAD 0

With multiple cores, the level 1 cache is duplicated
and each core has its own. This means that more
cache is available on the system but they need to be
synchronized.

With hyperthreading, the two threads share the
same level 1 cache, so in the worst case would only
have half of it available.

So, with multiple cores programmers must limit
the amount of shared data between the threads
on each core to avoid synchronization delays. With
hyperthreading, the level 1 cache is shared between

How to Optimize the Scalability & Performance of a Multi-Core Operating System

THREAD 1

the hyper threads. This means if the data used by
is different
contention and data will have to be loaded from

each thread it will cause cache
the main memory much more often. In this case
performance will be improved only if independent
operations are made on the same data set. This is
usually a special situation, so in most cases
hyperthreading will not improve performance and
we suggest disabling it. Also, since both the core
and level 1 cache are shared between the two
hyper threads, both of them should be used by real-

time applications or non-real-time applications.

I Z SALES@INTERVALZERO.COM

781-996-4481

INTERVALZERO.COM 10

IntervalZero


mailto:SALES@INTERVALZERO.COM

1.7. DMA (Direct Memory Access)

Access to the I/0, which can be PCl-e, USB or any  speed busses, the Direct Memory Access (DMA)
other type, is controlled by the CPU instructions. feature was developed. Using DMA a device will
This means that when a device such as a NIC signals  signal the CPU that data was updated and directly
updated data with an interrupt, the CPU has to query  send this data to the main memory without needing
for the data and send it to the main memory. This  any action from the CPU.

adds a lot of unnecessary load on the FSB. For high-

SOUTHBRIDGE

If the CPU plans to immediately use this data, there
is a new feature that can be used called Direct Cache
Access (DCA) where the data would be copied to
both the main memory and CPU cache.

I Z How to Optimize the Scalability & Performance of a Multi-Core Operating System IntervalZero

SALES@INTERVALZERO.COM 781-996-4481 INTERVALZERO.COM 11


mailto:SALES@INTERVALZERO.COM

2. Memory & Multicore Programming

2.1. Caching Methods

Caching is completely controlled by the processor
and cannot be modified by the programmer. But the
way it is implemented may have a huge impact
on the program performance. Data available in
the different caches may be different or the data
in lower-level caches may be duplicated in
higher-level caches. Having this data duplicated
makes the higher-level cache seem smaller, but if
two cores access the same variable shared by that
higher-level cache, then they can use it to
synchronize values instead of going all the way to
the main memory.

We can assume that the cache is always full as this
will be true once the computer has been running
for a few minutes. So, any data added to the cache

How to Optimize the Scalability & Performance of a Multi-Core Operating System

will cause another cache line to be “evicted”, which
means copied back to the next level of cache which
will in turn send a value back to the main memory
if it did not already contain the evicted value. By
default, the oldest used value in the cache will be
evicted, although some newer processors have
more complex calculations to choose which value to
evict. Processors have memory management
instructions that can be used to force or bypass
these cache features, but using these functions is
very hardware- and
requires development time. These functions will
not be described here but are explained in Ulrich

Drepper’s paper referenced in the introduction.

and application-specific

I Z SALES@INTERVALZERO.COM

781-996-4481

INTERVALZERO.COM 12

IntervalZero


mailto:SALES@INTERVALZERO.COM

2.2. Exclusive and Shared Caches

As described in section 1.3, there are multiple cache
architectures available which impact performance.
The selection of which core each thread should run
on should depend on how the threads interact and
what caches are available.

Ideally, threads that
should run on the same core and threads running
on different cores should not share variables. But
if this was possible, there would only be small
applications running on a single core. Bigger
applications multiple cores to run
different modules and still need to share data

share many variables

require

and synchronize modules.

WINDOWS

©9

L1id L1i L1d L1i

Programmers therefore need to identify which
variables are shared or not and try to keep as many
local variables in the exclusive cache while having
shared caches to contain shared variables. In the
specific case of RTX64 where there are two
operating systems each with their own cores, an
ideal situation would be to have three levels of
cache: the level 1 exclusive to each core, the
level 2 separated in RTX64 core cache and
Windows core cache, and the last level cache
shared by all cores. This way the Windows
applications cannot pollute the RTX64 level 2
cache and threads on the different RTX64 cores
can share variables without relying on hardware
which is shared with the non-real-time space.
This ideal situation, however, is only valid when
the most commonly used variables in the RTX64
applications do not exceed the size of the level 2
cache.

RTX64

0

Lid L1i L1d L1i

L3 (LLO)

How to Optimize the Scalability & Performance of a Multi-Core Operating System

I Z SALES@INTERVALZERO.COM

781-996-4481

INTERVALZERO.COM 13

IntervalZero


mailto:SALES@INTERVALZERO.COM

2.3. Optimizing Variable Declaration

To take advantage of the multi-core and cache
optimizations, different variable types have to be
identified and handled differently. The different
variable types are:

- Variables used by a single core. These variables
should only appear in one level 1 cache. While
they can be evicted to L2/LLC, they cannot
appear in multiple L1 caches.

- Real-only variables (initialized at the beginning
and then never changed). These variables can
be shared by multiple cores without
performance issues.

- Mostly read-only variables.

- Often modified variables. Variables that are
often modified by multiple cores or by a core
while in a shared state will have slow access,
so they should be grouped together to avoid
interfering with other variables.

There are compiler definitions that can ensure
alignments and explicitly indicate the type of
variables but improvements can be achieved just by
declaring the variables properly.

- Variables are accessed by cache lines of 64
bytes, so it is best to make sure only one type
of variable is available in a cache line. To
achieve this, variables can be grouped in
structures whose length is a multiple of
128 bytes.

- The total size of the structures should be as
small as possible and variables will be aligned
in structures (we can assume a 64-bit alignment
on 64-bit systems) so smaller variable types
should be grouped together. For example, two
int or four short.

How to Optimize the Scalability & Performance of a Multi-Core Operating System

- Prefetching will load the next cache line so the
first variable to be used should be at the
beginning of the structure and variables should
be declared in the order they are used.

- “Mostly read-only” and “Often modified”
variables that are consumed together should
be grouped together so that they can all
be updated in a single operation.

If these rules are not followed you may have an
unexpected situation called “false sharing”. This
happens when a variable that should be read-only
or consumed by a single core is marked invalid
because it is on the same cache line as a variable
modified by a different core. In that case access to
the first variable will be slow even though it should
not be. Having the different types of variables in
different cache lines ensures this situation does not
happen.

Access to shared and often modified variables may
be slow and even subject to interference if the
FSB is overloaded. These variables should not be
accessed by threads which are very deterministic
and require small jitters. To achieve this, it may be
useful to create core specific relay variables that are
accessed by the highly deterministic thread and let a
lower priority thread synchronize the values with
the shared variables.

I Z SALES@INTERVALZERO.COM

781-996-4481

INTERVALZERO.COM 14

IntervalZero


mailto:SALES@INTERVALZERO.COM

2.4. Optimizing Variable Access

When work is done on big data sets which exceed
the cache size, it may be useful to write the code in
a way that optimizes cache use. These operations
could be picture analysis or other operations on big
matrices. This section should only be considered if
the matrix size is too big to fit in the cache. Since
the data will have to load from the main memory, it
should be consumed in a way that takes advantage
of cache and RAM technologies:

- If possible, the data set should be broken
into smaller sets that fit in the cache and
all operations on a single set should
be done before moving to the next set.

- The data should be accessed in the order it is
defined in the memory so that prefetching
reduces the loading time.

We will use the multiplication of two square
matrices A and B, each with 2000 rows and
columns, as an example to show possible
modifications to the code.

A matrix is defined in the memory as an array
of arrays. So, variables are organized in the
following way:

<

<) | < | <

How to Optimize the Scalability & Performance of a Multi-Core Operating System

The standard code to accomplish the multiplication
would be very simple and use 3 for loops:

for (inti=0;i<2000; i++){
for (intj=0;j < 2000; j++) {
for (intk=0; k <2000; k++)
Result[i][j] += Alillk] * BIKI[I;

}

With this code the matrices are consumed in
different ways:

A:
-
>
B:
v v v v \ / v
IntervalZero

I Z SALES@INTERVALZERO.COM

781-996-4481

INTERVALZERO.COM 15


mailto:SALES@INTERVALZERO.COM

With this simple logic, the data in the first matrix is  In such cases the programmer should try to break
processed only once and in the order it is located the calculations in smaller datasets that fit in the
in the memory. But the data in the second matrix L1d cache and try to finish using a dataset
is loaded many times and in an order which looks  before moving to the next one.

random to the processor.

int SetSize = DataSetSize / CellDataSize; // 64 / 8
int Iteration = 2000 / SetSize;
for (inti=0; i < Iteration; i+= SetSize) {
for (int j = 0; j < Iteration; j+= SetSize) {
for (int k = 0; k < Iteration; k+= SetSize)
{for (inti2 =0;i2 < SetSize; i2++) {
for (intj2 = 0; j2 < SetSize; j2++) {
for (int k2 = 0; k2 < SetSize; k2++)
Result[i][j+SetSize*i2+j2] +=
Ali]l[k+SetSize*i2+k2] * B[k][j+SetSize*k2+j2];

}
}
}
}
}
I Z How to Optimize the Scalability & Performance of a Multi-Core Operating System IntervalZero
SALES@INTERVALZERO.COM 781-996-4481 INTERVALZERO.COM 16



mailto:SALES@INTERVALZERO.COM

To simplify the equation, pointers can be used to
represent the matrices:

int SetSize = DataSetSize / CellDataSize; // 64 / 8
int Iteration = 2000 / SetSize;

for (inti=0;i < Iteration; i+= SetSize) {
for (int j = 0; j < Iteration; j+= SetSize) {
for (int k = 0; k < Iteration; k+= SetSize)
{ for (inti2 = 0; i2 < SetSize; i2++) {

R2 = &Result[i][j + SetSize * i2];

A2 = &A[il[k + SetSize * i2];

for (int j2 = 0; j2 < SetSize; j2++) {

for (int k2 = 0; k2 < SetSize; k2++)

{ B2 = &B[k][j + SetSize *
k2]; R2[j2] += A2[k2] +
B2[j2];

To simplify the equation, pointers can be used to
represent the matrices:

for (inti=0; i < Iteration; i+= SetSize) {
for (int j = 0; j < Iteration; j+= SetSize) {
for (int k = 0; k < Iteration; k+= SetSize)

{for (inti2 = 0;i2 < SetSize; i2++) {
R2 = &Result[i][j + SetSize * i2]: Such code modifications can
A2 = &A[i][k + SetSize * i2]: reduce the calculation time
for (int k2 = 0; k2 < SetSize; k2++) by 75%, which can make a big
{ B2 = &BIK][j + SetSize * k2]; difference. But as they make
for (intj2 = 0; 2 < SetSize; j2++) the code more complex and
R2[j2] += A2[k2] + B2[j2]; introduce new variables, they
} are only useful when the data
} processed is large enough that
} the improvements outweigh
} the extra development time.
}
I Z How to Optimize the Scalability & Performance of a Multi-Core Operating System IntervalZero
SALES@INTERVALZERO.COM 781-996-4481 INTERVALZERO.COM 17



mailto:SALES@INTERVALZERO.COM

2.5. Optimizing Code Predictability

There is much less work to be done with the source
code. The compiler knows the proper ordering and
optimization apply
automatically. But any error in prediction for the
instructions will cause many more delays than for
the data because instructions need to be
decoded before they are used by the CPU.
Therefore, if possible the code should limit
prediction errors.

rules and will them

Branching code should be avoided in the default/
normal execution paths. When the expected
conditions are met in the code, it should not cause a
branch or jump. When a condition has a most likely
value, the most likely case code should follow as
it will be the one pre-loaded. This happens, for
example, when checking for errors or incorrect
parameters. We can expect that things work
properly and the data provided is valid most of the
time. In that case, normal operation should follow

2.6. Serialized Code

There are many pieces of an application, including
libraries used, that are called by multiple threads
running on different cores. There is no way to avoid
serialized code completely without duplicating most
of the application and OS code which would hurt
performances even more.

To avoid concurrent access to serialized parts of
the code, the OS uses an internal mutex called a
spinlock. A spinlock allows a thread to wait for the
needed resource without releasing the core to
another thread. Spinlocks are generally only used
for very short waiting periods, much shorter
than the scheduler’s timer period.

How to Optimize the Scalability & Performance of a Multi-Core Operating System

the condition and the error handling code can
be located further away.

There is another optimization that will happen in
the CPU called “Out Of Order execution” (O0O).
This is when the CPU detects that two instructions
are unrelated and the second execution can be
started first to save processing time. This normally
does not impact performance unless the second
instruction will use a resource (such as reading from
the main memory) that the first instruction will also
need, thus notably delaying the execution of the
first Memory management
instructions of the CPU can prevent OOO from
happening if it causes a problem, but once again
this will require a precise understanding of the
hardware and

instructions work.

instruction.

how memory management

Recent high-end processors have added a new
feature to reduce the impact of serialized code:
transactional registers. Operations
transactional registers are not applied to the normal
registers immediately. This means that instead of
waiting for the resource using a spinlock, the
second thread performs the calculations in the
transactional registers and applies them when
the resource is released only if the registers read
were not modified in the meantime. In over 90%
of cases, the read registers will not have been
modified and the second thread will have run
without waiting.

done in

I Z SALES@INTERVALZERO.COM

781-996-4481

INTERVALZERO.COM 18

IntervalZero


mailto:SALES@INTERVALZERO.COM

. 3. Practical Issues °

3.1. Performance Decrease in Multicore

A real-time application was too slow or caused the CPU load to be close to 100%
so an extra RTX64 core was added to increase performance. But performance did
not improve with the extra core or even decreased.

CAUSE

This is most likely due to data synchronization delays. If the application was not
developed for a multi-core environment and many variables are shared by the
threads on different cores, they will render caches useless and performance will likely
decrease due to constant main memory access or cache coherency mechanisms.

POSSIBLE SOLUTIONS

The best solution is most likely to modify the application following the guidelines in
section 2 of this paper.

To improve performance without modifying the software, the approach of adding
cores is not workable with this specific application. Increasing the frequency of the
single core used and possibly the frequency of the RAM would be more efficient.

I Z How to Optimize the Scalability & Performance of a Multi-Core Operating System IntervalZero

SALES@INTERVALZERO.COM 781-996-4481 INTERVALZERO.COM 19


mailto:SALES@INTERVALZERO.COM

3.2. Separating Thread Variables Did Not Improve Performance

The real-time application was modified to run on multiple cores. The threads on each
core only share a limited number of variables and yet these modifications do not
seem to have improved performance significantly.

If separating the variables used by different cores did not improve performance,
there is probably false sharing happening. As explained in section 2.3, you need
to make sure that variables that are not shared are not on the same cache line as
variables which are shared. Variables are not loaded individually by the cache, they
are loaded as cache lines of 128 bytes.

POSSIBLE SOLUTIONS

Review the declaration of the variables as explained in section 2.3. Group the
different sort of variables in different structures that take whole cache lines to make
sure they are separated in the memory and will not interfere.

I Z How to Optimize the Scalability & Performance of a Multi-Core Operating System IntervalZero

INTERVALZERO.COM 20

SALES@INTERVALZERO.COM 781-996-4481


mailto:SALES@INTERVALZERO.COM

3.3. Processes on Different RTX64 Cores Interfere

Two independent applications have been set up to run on two different RTX64
cores, but when one of them has heavy calculations, it causes latency in the other.

Two different cores still share resources even if everything has been done to separate
them. Even if the 1/O used are on separate PCl-e lines and there is no memory shared,
the last level cache (LLC) of the CPU is still used by both applications and so is the
front side bus (FSB) to access the 1/0 and RAM. There can be contention in either the
LLC or the FSB or both.

When an application does heavy calculations, it likely also uses a large amount of
data. This data will pollute the LLC and force the other application to request the data
from the RAM again. Loading this data will also create a lot of traffic on the FSB which
might get congested. If the other application also needs to access RAM data, these
accesses will be longer.

POSSIBLE SOLUTIONS

A first solution would be to limit how fast calculations are performed on the first
application to prevent it from polluting the cache and overloading the FSB. Another
solution is to get a CPU with more cache and a RAM module with higher frequency to
reduce the impact of the heavy calculations.

On a few very high-end processors, Intel has developed a technology called “Cache
Allocation Technology” (CAT) which reserves cache space for a specific
processor. Intel also announced a technology called “Memory Bus Allocation”
(MBA) which reserves an FSB bandwidth for a specific core. This technology is only

currently available on the latest series of high-end processors. It is supported from

RTX64 3.4.
I Z How to Optimize the Scalability & Performance of a Multi-Core Operating System IntervalZero
SALES@INTERVALZERO.COM 781-996-4481 INTERVALZERO.COM 21



mailto:SALES@INTERVALZERO.COM

3.4. More Windows Cores Cause Higher Latency

An RTX64 application was deployed on a new CPU which is faster and has more
cores. The new cores have been assigned to Windows. There has been no change
to either the Windows or RTX64 side of the system and yet there are now delays in
RTX64 applications.

This is caused by bus contention. The front side bus (FSB) which connects the CPU
cores to the RAM is a limited resource much slower than CPU cores. It is shared by
all cores and any single core can load it completely. There is most likely a Windows
application in the system that consumes a lot of data. This application accesses the
data through the FSB as fast as possible using all cores available to Windows. With
more Windows cores the ratio of FSB bandwidth given to the RTX64 cores has
been reduced, increasing the delays to access the main memory.

POSSIBLE SOLUTIONS

The ideal solution would be to move to a NUMA platform or reserve bandwidth
for RTX64. But changing the platform to NUMA would require major
modifications to the applications and NUMA is not supported by RTX64 yet. Intel
provides a technology to allocate bandwidth called “Memory Bandwidth
Allocation” (MBA), which is supported from RTX64 3.4.

The currently available solutions are to limit the number of system cores to avoid the
contention (contention becomes very important when there are more than four cores)
or to increase the FSB bandwidth. If possible, our recommendation is to purchase
faster RAM and ensure that the Chipset supports this faster frequency.

RTX64 Support for CAT and MBA (Intel RDT)

Intel has features to its high-end processors such as cache allocation technology (CAT), memory
bus allocation (MBA) and transactional registers to reduce the performance impact and protect

critical threads against interferences. They are part of Intel Resource Director technology (Intel
RDT). RTX64 supports these features by linking them to the priority and affinity settings of real-
time threads to enable developers to use newer processors without needing to make changes to
their program. More recent Intel processors support Intel TCC (Time Coordinated Computing) that
brings a higher level of optimization for real time computing.

I Z How to Optimize the Scalability & Performance of a Multi-Core Operating System IntervalZero

SALES@INTERVALZERO.COM 781-996-4481 INTERVALZERO.COM 22


mailto:SALES@INTERVALZERO.COM

Conclusion s

A real-time operating system allows developers to
write real-time applications the same way they write
Windows applications and handles scheduling and
separation of resources with Windows. But some of
the resources that are still shared, like the processor
cache and front-side bus bandwidth, become
bottlenecks of the system in recent processors.
This creates performance issues that often seem
inexplicable or counterintuitive and impacts the
scalability of the system as a whole.

In this paper, we examined what causes these
performance issues, how hardware choices can
improve performance, and workarounds to help
resolve the issues. We also introduced
technology, Intel’s CAT and MBA, that further
improves performance and is supported by
RTX64. With this information and these
techniques, you can optimize applications for
multicore systems and improve scalability for
improved results across the organization.

For more information about how to solve performance challenges or the latest

features supported by RTX64, please contact your IntervalZero rep or get in touch.

How to Optimize the Scalability & Performance of a Multi-Core Operating System

I Z SALES@INTERVALZERO.COM

781-996-4481

INTERVALZERO.COM 23

IntervalZero


mailto:SALES@INTERVALZERO.COM

Selecting a Hardware Platform °

Follow these guidelines to determine which components will impact your system the most.

a. Processor

What a real-time system requires the most is
stability, not burst performance or power saving.
Atom processors provide good performance while
mobile processors will
Features like hyperthreading, boost and sleep
states should be disabled if available.

never be very stable.

Independent RTX64 applications should use
separate cores and have separate cores from
Windows. But to avoid contention
recommend limiting the number of cores to four

or being sure that no Windows applications will

issues, we

have bursts of data consumption.

b. Chipset & RAM

With a heavy application, the RAM access will
be the bottleneck. The size of the RAM is not the
issue. You need to make sure all the data used by
the applications can fit in it; any extra space will
not change anything. The frequency of the RAM &
Chipset bus, however, is critical and will determine
how fast the CPU can access all the data used. For
this reason, you should consider as fast a frequency
as you can afford.

How to Optimize the Scalability & Performance of a Multi-Core Operating System

The size and distribution of the cache can often
have more impact than the CPU frequency.
Generally, the bigger the cache, the faster the
code will be executed, although as cache size
increases, access latency tends to increase as well.
If the cache size is still smaller than the dataset
size and many RAM accesses are used, larger
cache will reduce overall delays. If the cache size
is already larger than the dataset size, then
increasing it is counterproductive.

If you have an RTX64 application that uses
multiple cores, having a level 2 cache shared only
by the RTX64 cores may be helpful (see section
1.3).

c. /0 Devices

Any possible bottleneck and conversion delay
should be avoided as there will
limitations from the RAM access side.

be enough

Any device linked to RTX64 should have its own
PCl-e line to avoid delays. New processors only
support PCl-e so PCl devices are actually grouped
and linked to PCl-e lines by hardware chips. This
should be avoided if possible as this extra chip
will introduce uncontrolled delays. Only devices
directly connected to the chipset will deliver good
performance.

All sleep and power saving options should be
disabled for the relevant PCl-e lines. These options
are in the BIOS and usually not modifiable by the
user, so a correctly configured BIOS should be
requested from the computer vendor.

I Z SALES@INTERVALZERO.COM

781-996-4481

INTERVALZERO.COM 24

IntervalZero


mailto:SALES@INTERVALZERO.COM

