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When upgrading your hardware platform to 

a newer and more powerful CPU with more, 

faster cores, you expect the application to run 

faster. More cores should reduce the average 

CPU load and therefore reduce delays. In many 

cases, however, the application does not run 

faster and the CPU load is almost the same as 

for the older CPU. With high-end CPUs, you 

may even see interferences that break 

determinism. Why does this happen, and 

what can you do about it? 

 

The answer: build for scalability. Unless an 

application is architected to take advantage 

of a multicore environment, most RTOS 

applications on 1-core and 4-core IPCs will 

perform nearly identically (contrary to the 

expectation that an RTOS application should 

scale linearly and execute 4 times faster on 

a 4 core IPC than it does on a 1 core IPC.) 

Without a scalable system, 3 of the 4 cores 

on the 4-core system will not be utilized. 

 

Even if the application seeks to use multiple 

cores, other architectural optimizations 

involving memory access, I/O, caching 

strategies, data synchronization and more 

must be considered for the system to truly 

achieve optimal scalability. 

 

While no system delivers linear scalability, 

you can work to achieve each application’s 

theoretical limit. This paper identifies the key 

architectural strategies that ensure the best 

scalability of an RTOS-based application. We 

will explore CPU architectures, explain why 

performance does not get the expected boost 

with newer or more powerful cores, describe 

how to reduce the effects of the interferences, 

and provide recommendations for hardware 

modifications to limit bottlenecks. 

Overview 
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This paper, written for RTOS users, addresses 

a system where both real-time and non-real- 

time applications run at the same time. To keep 

determinism in the real-time applications, they 

ideally should not share any hardware with the non- 

real-time applications. But at the same time, it is 

helpful to have memory spaces and synchronization 

events available to both sides. 

 

However, it is not possible to achieve both. Either 

you have a dedicated real-time computer but must 

rely on a bus protocol to exchange data with the 

non-real-time applications, or you have both on the 

same machine but they will share the CPU bus and 

cache. Nowadays CPU cores are much faster than 

memory and I/O access, so the interferences come 

from competition in the access of these resources. 

 

There is another important thing to consider when 

using multiple cores. The different threads in an 

application usually share variables, so access to 

these variables has to be synchronized to ensure 

the values are consistent. The CPU will do this 

automatically if it is not handled in the code, but as 

the CPU does not know the whole program, it will not 

handle it optimally and this will create many delays. 

These delays are the reason that an application will 

not necessarily run faster on two cores than on one. 

This paper will first examine the CPU architecture 

relating to caches, memory and I/O access. Then 

we will explain how threads interact and how 

program design can help improve performances 

with multiple cores. Finally, we will give examples of 

practical problems and what can be done to solve or 

minimize them. 

 

Most of the technical information in this paper 

is based on the excellent paper What Every 

Programmer Should Know About Memory by Ulrich 

Drepper at Red Hat. We recommend reading that 

paper if you have the time. 

Introduction 

mailto:SALES@INTERVALZERO.COM


How to Optimize the Scalability & Performance of a Multi-Core Operating System 

INTERVALZERO.COM 4 SALES@INTERVALZERO.COM 781-996-4481 

 

RAM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

1.1. Traditional Architecture: UMA (Uniform Memory Access) 
 

In this model, all the cores are connected to the 

same bus, called Front Side Bus (FSB), which links 

them to the Northbridge of the chipset. This 

RAM and its memory controller are connected to 

this same Northbridge. All other hardware is 

connected to the Southbridge which connects to 

the CPU through the Northbridge. 

 

From this design we can see that the Northbridge, 

Southbridge and RAM are resources shared by all 

the cores and therefore by both real-time and non- 

real-time applications. Additionally, RAM controllers 

only have one port, which means only one core can 

access the RAM at a time. 

The CPU frequencies have increased steadily for 

many years without becoming more expensive, 

but it has not been the same for memory. 

Persistent memory access (such as hard drives) is 

very slow, so RAM was introduced to allow the 

CPU to execute code and access data without 

having to wait for the hard drive accesses. 

 

Very fast Static RAM is available, but as it is 

extremely expensive it can only be used in low 

amounts in standard hardware (a few MB). What 

we commonly call RAM in computers is Dynamic 

RAM, which is much cheaper but also much 

slower than Static RAM. Access to Dynamic RAM 

takes hundreds of CPU cycles. With multiple 

cores all accessing this Dynamic RAM, it is easy to 

see that the FSB and RAM access are the biggest 

bottlenecks in the traditional architecture. 

1. CPU Architecture 
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1.2. NUMA (Non-Uniform Memory Access) Architecture 

To remove the FSB and RAM as bottlenecks, a new architecture was designed with multiple Dynamic RAM 

modules and multiple buses to access them. Each core could possibly have its own RAM module. The 

Southbridge to access I/O can also be duplicated so different cores could use different buses to access 

the hardware. For real-time applications, this would have the added advantage of no longer sharing these 

resources with non-real-time applications. 

 

 

    

 

 

 

 

 

 

 

 

    

 

 

 

 

Originally NUMA was developed for the 

interconnection of multiple processors, but as 

processors now have more and more cores, it has 

been extended and used inside processors. 

 

The NUMA design introduces new problems, as 

variables are only located in a single RAM module 

while multiple cores may need to access them. 

Accessing variables attached to a foreign core 

may be much slower and applications should be 

developed specifically for this architecture to use 

it properly. We would recommend only using this 

architecture for applications developed for it, but 

when the number of cores on a system exceeds  

four, the FSB of the UMA architecture gets very 

easily overloaded and may cause even more 

delays. Therefore, NUMA will be the architecture 

for larger machines. 

 

To gain the advantages of NUMA without its issues, 

some machines are made with nodes of processors 

sharing a RAM module. In that case applications 

only using cores inside a single node would not 

see the effects of NUMA and work normally. 

 

We will not go into more details on this architecture 

as it is not supported by RTX64 at the moment. 

PCI-e 
USB 

SATA 

SOUTHBRIDGE 

CPU 

CORE 

1 

CORE 

2 

CORE 

3 

CORE 

4 

SOUTHBRIDGE 

PCI-e 
USB 

SATA 

mailto:SALES@INTERVALZERO.COM


How to Optimize the Scalability & Performance of a Multi-Core Operating System 

INTERVALZERO.COM 6 SALES@INTERVALZERO.COM 781-996-4481 

 

CPU 

CORE 

1 

CORE 

2 

CORE 

3 

CORE 

4 

CPU 

CORE 

1 

CORE 

2 

CORE 

3 

CORE 

4 

CPU 

CORE 

1 

CORE 

2 

CORE 

3 

CORE 

4 

1.3. Memory and Caches 

As mentioned previously, Dynamic RAM 

access is slow for the CPU (hundreds 

of cycles on average to access a word) 

compared to accessing Static RAM. 

Therefore, CPUs now include Static RAM 

used as cache and organized in multiple 

levels. When a core needs to access 

data, that data will be copied from the 

main memory (Dynamic RAM) into its 

closed cache so it can access it multiple 

times faster. 

 

QUAD CORE CPU WITH TWO LEVELS OF CACHE 
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QUAD CORE CPU WITH THREE LEVELS OF CACHE, LEVEL 2 IS EXCLUSIVE 
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QUAD CORE CPU WITH THREE LEVELS OF CACHE, LEVEL 2 IS SHARED BY CORE NODES 
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The first level of cache (L1) has separate areas for instructions (the program code) and data (the variables); 

other levels are unified. Higher levels of cache are larger and slower than the first level and may be exclusive 

to a core or shared by multiple cores. The largest cache, also called Last Level Cache (LLC), is 

normally shared by all cores. Average access times for each cache level given in CPU cycles is given in 

the table below. 

 

 

 CACHE LEVEL  

LEVEL 1 
 

 

LEVEL 2 
 

 

LEVEL 3 

MAIN MEMORY 

 AVERAGE ACCESS TIME  

~ 3 
 

 

~ 15 
 

 

~ 20 
 

 

~ 300 
 

 

 

As you can see, performance takes a huge hit any 

time the CPU has to wait for the main memory to 

be accessed because the data is not available in 

the cache. This is called a “cache miss”. The main 

memory data access is much faster if it is done in 

bulk or in order. But the data and instruction access 

in a program is rarely random, so the CPUs will try 

to predict which memories will be used next and 

load them to the cache in advance. This technique 

is called prefetching and improves performance 

significantly (~90% delay reduction). 

 

To predict which data should be in the cache, 

processors rely on two principles: temporal locality 

and spatial locality. 

• Temporal locality means that variables and 

instructions are usually accessed multiple 

times in a row. This is true especially with loops 

and variables local to a function. 

• Spatial locality means that variables defined 

together are usually used together and the next 

line of code most likely contains the next 

instruction to execute. 

Temporal locality is the reason for having caches. 

Copying the data to a local buffer before using it is 

only relevant if it will be accessed multiple times. To 

take advantage of spatial locality and the fact that 

RAM is accessed faster in bulk, data is not requested 

and transferred in bytes but in cache lines which are 

normally 64 bytes long. Also, the CPU will usually 

prefetch the next line automatically. The work of the 

programmer, detailed in section 2, is to make the 

data and instruction order as predictable as possible 

so that the prefetch works efficiently. 
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1.4. Bottlenecks 

Because caches are expensive they are usually small, 

so not all the data and instructions related to an 

application can be in a cache. Also, it is shared by 

all the applications running on the cores attached to 

this cache. This means that when an application or 

thread is loading too much data, it will evict older 

data that another thread or application may still 

want to use and need to reload. The more code that 

is executing on the core, the more likely instructions 

will be evicted when thread switching. This fight for 

cache is called “memory contention”. 

 

The LLC is shared by both real-time and non-

real-time applications when the system is a single 

socket or a multiple socket system is configured 

with a socket having both real-time and non-real-

time cores. As a result, non-real-time 

applications can affect the performance of the 

real-time application when they use a large 

amount of memory, by running an HD video for  

 

 

example. If the amount of data used by an 

application or thread is small, it may be possible to 

choose a CPU with enough cache to keep that 

whole data in the exclusive caches where it will not 

be affected by other applications. 

 

The FSB which accesses the main memory is very 

slow compared to the CPU, so heavy data loading 

from a single core could use the whole bandwidth 

alone. This is called “bus contention” and will start 

being visible when the CPU has four or more cores. 

As this bus is the real bottleneck, it is usually better 

to spend money on a faster RAM and Chipset bus 

than on a faster CPU. A faster CPU will usually just 

wait longer. 

 

 

1.5. Data Synchronization 

The main reason why an application does not run 

faster on two cores than one is data 

synchronization. Code serialization can also play 

a role in execution latency. As mentioned 

previously, cores always access data through 

their lowest level of cache which is exclusive. 

This means that if a variable is accessed by two 

cores, it must be present in the cache of both cores, 

but when its value is modified it has to be 

updated in the cache of both cores. The CPU must 

ensure data consistency for the whole system which 

can cause huge delays, generally as a result of one 

core needing to snoop data in the cache of another 

core to ensure data integrity. 

 

 

To maintain this consistency the CPU uses the MESI 

protocol, which defines the state of a cache line. 

• MODIFIED: The value has been modified by 

this core so this is the only valid copy in the 

system. 

• EXCLUSIVE: This core is the only one using this 

variable. It does not need to signal changes. 

• SHARED: This variable is available 

in multiple caches. Other cores should be 

informed if it changes. 

• INVALID: No variable has been loaded or its 

value was changed by another core. 
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The status of each cache line is maintained by 

each core. To do this, they have to observe all data 

requests to the main memory and inform other 

cores that they already have a variable being read 

or have modified its value. Every time a core wants 

to access a variable that is modified in the cache of 

another core, the new value has to be sent to the 

main memory and the reading core. Access to this 

value becomes as slow as if there were no cache. If 

there is a variable written by one core often and read 

by another, here is what will happen: 

 

 

 

ACTION CORE 1 STATUS  CORE 2 STATUS  

Core 1 reads the value EXCLUSIVE INVALID 

Core 2 reads the value SHARED SHARED 

Core 1 modifies the value MODIFIED INVALID 

Core 2 reads the value SHARED SHARED 

Core 1 modifies the value MODIFIED INVALID 

Core 2 reads the value SHARED SHARED 

 

 

In this case the Core 2 has to read the value from 

the main memory every time, which removes the 

advantage of the cache. And the Core 1 has to send 

a “Request For Ownership” (RFO) on the FSB every 

time it modifies the value and then update the main 

memory every time the Core 2 requests the value. 

 

Access to this value will be much slower when the 

two threads are on different cores compared to both 

threads running on a single core and it will add 

traffic to the FSB. 

There is much less of a problem for instructions 

because they are normally read-only. In this case 

there is no need to know how many cores are using 

it. Self-modifying code exists but it is very 

dangerous and rarely used, so we will not address 

it here. 
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CORE 1 

1.6. Multi-Core and Hyperthreading 

Multiple cores and multiple threads on a single core 

seem to have the same use but the way they share 

resources is very different. As a result, the way they 

should be used is almost opposite. 

 

 

 

 

 

 

THREAD 0 

 

THREAD 1 

L1I 

L1D 

L2 

 

 

 

 

With multiple cores, the level 1 cache is duplicated 

and each core has its own. This means that more 

cache is available on the system but they need to be 

synchronized. 

 

With hyperthreading, the two threads share the 

same level 1 cache, so in the worst case would only 

have half of it available. 

 

So, with multiple cores programmers must limit 

the amount of shared data between the threads 

on each core to avoid synchronization delays. With 

hyperthreading, the level 1 cache is shared between 

the hyper threads. This means if the data used by 

each thread is different it will cause cache 

contention and data will have to be loaded from 

the main memory much more often. In this case 

performance will be improved only if independent 

operations are made on the same data set. This is 

usually a special situation, so in most cases 

hyperthreading will not improve performance and 

we suggest disabling it. Also, since both the core 

and level 1 cache are shared between the two 

hyper threads, both of them should be used by real-

time applications or non-real-time applications. 
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1.7. DMA (Direct Memory Access) 

Access to the I/O, which can be PCI-e, USB or any 

other type, is controlled by the CPU instructions. 

This means that when a device such as a NIC signals 

updated data with an interrupt, the CPU has to query 

for the data and send it to the main memory. This 

adds a lot of unnecessary load on the FSB. For high- 

 

 

speed busses, the Direct Memory Access (DMA) 

feature was developed. Using DMA a device will 

signal the CPU that data was updated and directly 

send this data to the main memory without needing 

any action from the CPU. 

 

 

  

 

 

 

If the CPU plans to immediately use this data, there 

is a new feature that can be used called Direct Cache 

Access (DCA) where the data would be copied to 

both the main memory and CPU cache. 
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2.1. Caching Methods 

Caching is completely controlled by the processor 

and cannot be modified by the programmer. But the 

way it is implemented may have a huge impact 

on the program performance. Data available in 

the different caches may be different or the data 

in lower-level caches may be duplicated in 

higher-level caches. Having this data duplicated 

makes the higher-level cache seem smaller, but if 

two cores access the same variable shared by that 

higher-level cache, then they can use it to 

synchronize values instead of going all the way to 

the main memory. 

 

We can assume that the cache is always full as this 

will be true once the computer has been running 

for a few minutes. So, any data added to the cache 

 

 

will cause another cache line to be “evicted”, which 

means copied back to the next level of cache which 

will in turn send a value back to the main memory 

if it did not already contain the evicted value. By 

default, the oldest used value in the cache will be 

evicted, although some newer processors have 

more complex calculations to choose which value to 

evict. Processors have memory management 

instructions that can be used to force or bypass 

these cache features, but using these functions is 

very hardware- and application-specific and 

requires development time. These functions will 

not be described here but are explained in Ulrich 

Drepper’s paper referenced in the introduction. 

2. Memory & Multicore Programming 
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2.2. Exclusive and Shared Caches 

As described in section 1.3, there are multiple cache 

architectures available which impact performance. 

The selection of which core each thread should run 

on should depend on how the threads interact and 

what caches are available. 

 

Ideally, threads that share many variables 

should run on the same core and threads running 

on different cores should not share variables. But 

if this was possible, there would only be small 

applications running on a single core. Bigger 

applications require multiple cores to run 

different modules and still need to share data 

and synchronize modules. 

 

 

Programmers therefore need to identify which 

variables are shared or not and try to keep as many 

local variables in the exclusive cache while having 

shared caches to contain shared variables. In the 

specific case of RTX64 where there are two 

operating systems each with their own cores, an 

ideal situation would be to have three levels of 

cache: the level 1 exclusive to each core, the 

level 2 separated in RTX64 core cache and 

Windows core cache, and the last level cache 

shared by all cores. This way the Windows 

applications cannot pollute the RTX64 level 2 

cache and threads on the different RTX64 cores 

can share variables without relying on hardware 

which is shared with the non-real-time space. 

This ideal situation, however, is only valid when 

the most commonly used variables in the RTX64 

applications do not exceed the size of the level 2 

cache. 
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2.3. Optimizing Variable Declaration 

To take advantage of the multi-core and cache 

optimizations, different variable types have to be 

identified and handled differently. The different 

variable types are: 

• Variables used by a single core. These variables 

should only appear in one level 1 cache. While 

they can be evicted to L2/LLC, they cannot 

appear in multiple L1 caches. 

• Real-only variables (initialized at the beginning 

and then never changed). These variables can 

be shared by multiple cores without 

performance issues. 

• Mostly read-only variables. 

 

• Often modified variables. Variables that are 

often modified by multiple cores or by a core 

while in a shared state will have slow access, 

so they should be grouped together to avoid 

interfering with other variables. 

 

There are compiler definitions that can ensure 

alignments and explicitly indicate the type of 

variables but improvements can be achieved just by 

declaring the variables properly. 

 

• Variables are accessed by cache lines of 64 

bytes, so it is best to make sure only one type 

of variable is available in a cache line. To 

achieve this, variables can be grouped in 

structures whose length is a multiple of 

128 bytes. 

 

• The total size of the structures should be as 

small as possible and variables will be aligned 

in structures (we can assume a 64-bit alignment 

on 64-bit systems) so smaller variable types 

should be grouped together. For example, two 

int or four short. 

 

 

• Prefetching will load the next cache line so the 

first variable to be used should be at the 

beginning of the structure and variables should 

be declared in the order they are used. 

 

• “Mostly read-only” and “Often modified” 

variables that are consumed together should 

be grouped together so that they can all 

be updated in a single operation. 

 

If these rules are not followed you may have an 

unexpected situation called “false sharing”. This 

happens when a variable that should be read-only 

or consumed by a single core is marked invalid 

because it is on the same cache line as a variable 

modified by a different core. In that case access to 

the first variable will be slow even though it should 

not be. Having the different types of variables in 

different cache lines ensures this situation does not 

happen. 

 

Access to shared and often modified variables may 

be slow and even subject to interference if the 

FSB is overloaded. These variables should not be 

accessed by threads which are very deterministic 

and require small jitters. To achieve this, it may be 

useful to create core specific relay variables that are 

accessed by the highly deterministic thread and let a 

lower priority thread synchronize the values with 

the shared variables. 
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2.4. Optimizing Variable Access 

When work is done on big data sets which exceed 

the cache size, it may be useful to write the code in 

a way that optimizes cache use. These operations 

could be picture analysis or other operations on big 

matrices. This section should only be considered if 

the matrix size is too big to fit in the cache. Since 

the data will have to load from the main memory, it 

should be consumed in a way that takes advantage 

of cache and RAM technologies: 

 

• If possible, the data set should be broken 

into smaller sets that fit in the cache and 

all operations on a single set should 

be done before moving to the next set. 

 

• The data should be accessed in the order it is 

defined in the memory so that prefetching 

reduces the loading time. 

 

We will use the multiplication of two square 

matrices A and B, each with 2000 rows and 

columns, as an example to show possible 

modifications to the code. 

 

A matrix is defined in the memory as an array 

of arrays. So, variables are organized in the  

following way:  

 

 

The standard code to accomplish the multiplication 

would be very simple and use 3 for loops: 

 

for (int i = 0; i < 2000; i++) { 

for (int j = 0; j < 2000; j++) { 

for (int k = 0; k < 2000; k++) 

Result[i][j] += A[i][k] * B[k][j]; 

} 

} 

 

With this code the matrices are consumed in 

different ways: 

A:  
 

      

 

      

 

      

 

      

 

      

 

      

 

 

B: 
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With this simple logic, the data in the first matrix is 

processed only once and in the order it is located 

in the memory. But the data in the second matrix 

is loaded many times and in an order which looks 

random to the processor. 

In such cases the programmer should try to break 

the calculations in smaller datasets that fit in the 

L1d cache and try to finish using a dataset 

before moving to the next one. 

 

 

 

 

int SetSize = DataSetSize / CellDataSize; // 64 / 8 

int Iteration = 2000 / SetSize; 

for (int i = 0; i < Iteration; i+= SetSize) { 

for (int j = 0; j < Iteration; j+= SetSize) { 

for (int k = 0; k < Iteration; k+= SetSize) 

{ for (int i2 = 0; i2 < SetSize; i2++) { 

for (int j2 = 0; j2 < SetSize; j2++) { 

for (int k2 = 0; k2 < SetSize; k2++) 

Result[i][j+SetSize*i2+j2] += 

A[i][k+SetSize*i2+k2] * B[k][j+SetSize*k2+j2]; 

} 

} 

} 

} 

} 
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To simplify the equation, pointers can be used to 

represent the matrices: 

 

int SetSize = DataSetSize / CellDataSize; // 64 / 8 

int Iteration = 2000 / SetSize; 

 

for (int i = 0; i < Iteration; i+= SetSize) { 

for (int j = 0; j < Iteration; j+= SetSize) { 

for (int k = 0; k < Iteration; k+= SetSize) 

{ for (int i2 = 0; i2 < SetSize; i2++) { 

R2 = &Result[i][j + SetSize * i2]; 

A2 = &A[i][k + SetSize * i2]; 

for (int j2 = 0; j2 < SetSize; j2++) { 

for (int k2 = 0; k2 < SetSize; k2++) 

{ B2 = &B[k][j + SetSize * 

k2]; R2[j2] += A2[k2] + 

B2[j2]; 

} 

} 

} 

} 

} 

} 

 

To simplify the equation, pointers can be used to 

represent the matrices: 

for (int i = 0; i < Iteration; i+= SetSize) { 

for (int j = 0; j < Iteration; j+= SetSize) { 

for (int k = 0; k < Iteration; k+= SetSize) 

{ for (int i2 = 0; i2 < SetSize; i2++) { 

R2 = &Result[i][j + SetSize * i2]; 

A2 = &A[i][k + SetSize * i2]; 

for (int k2 = 0; k2 < SetSize; k2++) 

{ B2 = &B[k][j + SetSize * k2]; 

for (int j2 = 0; j2 < SetSize; j2++) 

R2[j2] += A2[k2] + B2[j2]; 

} 

} 

} 

} 

} 

 

 

 

 

 

 

 

 

Such code modifications can 

reduce the calculation time 

by 75%, which can make a big 

difference. But as they make 

the code more complex and 

introduce new variables, they 

are only useful when the data 

processed is large enough that 

the improvements outweigh 

the extra development time. 
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2.5. Optimizing Code Predictability 

There is much less work to be done with the source 

code. The compiler knows the proper ordering and 

optimization rules and will apply them 

automatically. But any error in prediction for the 

instructions will cause many more delays than for 

the data because instructions need to be 

decoded before they are used by the CPU. 

Therefore, if possible the code should limit 

prediction errors. 

 

Branching code should be avoided in the default/ 

normal execution paths. When the expected 

conditions are met in the code, it should not cause a 

branch or jump. When a condition has a most likely 

value, the most likely case code should follow as 

it will be the one pre-loaded. This happens, for 

example, when checking for errors or incorrect 

parameters. We can expect that things work 

properly and the data provided is valid most of the 

time. In that case, normal operation should follow  

 

 

the condition and the error handling code can 

be located further away. 

 

There is another optimization that will happen in 

the CPU called “Out Of Order execution” (OOO). 

This is when the CPU detects that two instructions 

are unrelated and the second execution can be 

started first to save processing time. This normally 

does not impact performance unless the second 

instruction will use a resource (such as reading from 

the main memory) that the first instruction will also 

need, thus notably delaying the execution of the 

first instruction. Memory management 

instructions of the CPU can prevent OOO from 

happening if it causes a problem, but once again 

this will require a precise understanding of the 

hardware and how memory management 

instructions work. 

 

 

2.6. Serialized Code 

There are many pieces of an application, including 

libraries used, that are called by multiple threads 

running on different cores. There is no way to avoid 

serialized code completely without duplicating most 

of the application and OS code which would hurt 

performances even more. 

 

To avoid concurrent access to serialized parts of 

the code, the OS uses an internal mutex called a 

spinlock. A spinlock allows a thread to wait for the 

needed resource without releasing the core to 

another thread. Spinlocks are generally only used 

for very short waiting periods, much shorter 

than the scheduler’s timer period. 

 

 

Recent high-end processors have added a new 

feature to reduce the impact of serialized code: 

transactional registers. Operations done in 

transactional registers are not applied to the normal 

registers immediately. This means that instead of 

waiting for the resource using a spinlock, the 

second thread performs the calculations in the 

transactional registers and applies them when 

the resource is released only if the registers read 

were not modified in the meantime. In over 90% 

of cases, the read registers will not have been 

modified and the second thread will have run 

without waiting. 

mailto:SALES@INTERVALZERO.COM


How to Optimize the Scalability & Performance of a Multi-Core Operating System 

INTERVALZERO.COM 19 SALES@INTERVALZERO.COM 781-996-4481 

 

 

 

 SOLUTIONS 

 

 

 

 

 

 

 

 

3.1. Performance Decrease in Multicore 
 

A real-time application was too slow or caused the CPU load to be close to 100% 

so an extra RTX64 core was added to increase performance. But performance did 

not improve with the extra core or even decreased. 

 

This is most likely due to data synchronization delays. If the application was not 

developed for a multi-core environment and many variables are shared by the 

threads on different cores, they will render caches useless and performance will likely 

decrease due to constant main memory access or cache coherency mechanisms. 

 

The best solution is most likely to modify the application following the guidelines in 

section 2 of this paper. 

 

To improve performance without modifying the software, the approach of adding 

cores is not workable with this specific application. Increasing the frequency of the 

single core used and possibly the frequency of the RAM would be more efficient. 

3. Practical Issues 
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 SOLUTIONS 

3.2. Separating Thread Variables Did Not Improve Performance 
 

The real-time application was modified to run on multiple cores. The threads on each 

core only share a limited number of variables and yet these modifications do not 

seem to have improved performance significantly. 

 

If separating the variables used by different cores did not improve performance, 

there is probably false sharing happening. As explained in section 2.3, you need 

to make sure that variables that are not shared are not on the same cache line as 

variables which are shared. Variables are not loaded individually by the cache, they 

are loaded as cache lines of 128 bytes. 

 

Review the declaration of the variables as explained in section 2.3. Group the 

different sort of variables in different structures that take whole cache lines to make 

sure they are separated in the memory and will not interfere. 
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 SOLUTIONS 

3.3. Processes on Different RTX64 Cores Interfere 
 

Two independent applications have been set up to run on two different RTX64 

cores, but when one of them has heavy calculations, it causes latency in the other. 

 

Two different cores still share resources even if everything has been done to separate 

them. Even if the I/O used are on separate PCI-e lines and there is no memory shared, 

the last level cache (LLC) of the CPU is still used by both applications and so is the 

front side bus (FSB) to access the I/O and RAM. There can be contention in either the 

LLC or the FSB or both. 

 

When an application does heavy calculations, it likely also uses a large amount of 

data. This data will pollute the LLC and force the other application to request the data 

from the RAM again. Loading this data will also create a lot of traffic on the FSB which 

might get congested. If the other application also needs to access RAM data, these 

accesses will be longer. 

 

A first solution would be to limit how fast calculations are performed on the first 

application to prevent it from polluting the cache and overloading the FSB. Another 

solution is to get a CPU with more cache and a RAM module with higher frequency to 

reduce the impact of the heavy calculations. 

 

On a few very high-end processors, Intel has developed a technology called “Cache 

Allocation Technology” (CAT) which reserves cache space for a specific 

processor. Intel also announced a technology called “Memory Bus Allocation” 

(MBA) which reserves an FSB bandwidth for a specific core. This technology is only 

currently available on the latest series of high-end processors. It is supported from 

RTX64 3.4. 
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RTX64 Support for CAT and MBA (Intel RDT) 

Intel has features to its high-end processors such as cache allocation technology (CAT), memory 

bus allocation (MBA) and transactional registers to reduce the performance impact and protect 

critical threads against interferences. They are part of Intel Resource Director technology (Intel 

RDT).  RTX64 supports these features by linking them to the priority and affinity settings of real-

time threads to enable developers to use newer processors without needing to make changes to 

their program. More recent Intel processors support Intel TCC (Time Coordinated Computing) that 

brings a higher level of optimization for real time computing. 

 

 

 SOLUTIONS 

3.4. More Windows Cores Cause Higher Latency 
 

An RTX64 application was deployed on a new CPU which is faster and has more 

cores. The new cores have been assigned to Windows. There has been no change 

to either the Windows or RTX64 side of the system and yet there are now delays in 

RTX64 applications. 

 

This is caused by bus contention. The front side bus (FSB) which connects the CPU 

cores to the RAM is a limited resource much slower than CPU cores. It is shared by 

all cores and any single core can load it completely. There is most likely a Windows 

application in the system that consumes a lot of data. This application accesses the 

data through the FSB as fast as possible using all cores available to Windows. With 

more Windows cores the ratio of FSB bandwidth given to the RTX64 cores has 

been reduced, increasing the delays to access the main memory. 

 

The ideal solution would be to move to a NUMA platform or reserve bandwidth 

for RTX64. But changing the platform to NUMA would require major 

modifications to the applications and NUMA is not supported by RTX64 yet. Intel 

provides a technology to allocate bandwidth called “Memory Bandwidth 

Allocation” (MBA), which is supported from RTX64 3.4. 

 

The currently available solutions are to limit the number of system cores to avoid the 

contention (contention becomes very important when there are more than four cores) 

or to increase the FSB bandwidth. If possible, our recommendation is to purchase 

faster RAM and ensure that the Chipset supports this faster frequency. 
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A real-time operating system allows developers to 

write real-time applications the same way they write 

Windows applications and handles scheduling and 

separation of resources with Windows. But some of 

the resources that are still shared, like the processor 

cache and front-side bus bandwidth, become 

bottlenecks of the system in recent processors. 

This creates performance issues that often seem 

inexplicable or counterintuitive and impacts the 

scalability of the system as a whole. 

In this paper, we examined what causes these 

performance issues, how hardware choices can 

improve performance, and workarounds to help 

resolve the issues. We also introduced 

technology, Intel’s CAT and MBA, that further 

improves performance and is supported by 

RTX64. With this information and these 

techniques, you can optimize applications for 

multicore systems and improve scalability for 

improved results across the organization. 

 

 

 

 

 

 

 

Conclusion 

 

For more information about how to solve performance challenges or the latest 

features supported by RTX64, please contact your IntervalZero rep or get in touch. 
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Follow these guidelines to determine which components will impact your system the most. 

a. Processor 

What a real-time system requires the most is 

stability, not burst performance or power saving. 

Atom processors provide good performance while 

mobile processors will never be very stable. 

Features like hyperthreading, boost and sleep 

states should be disabled if available. 

 

Independent RTX64 applications should use 

separate cores and have separate cores from 

Windows. But to avoid contention issues, we 

recommend limiting the number of cores to four 

or being sure that no Windows applications will 

have bursts of data consumption. 

The size and distribution of the cache can often 

have more impact than the CPU frequency. 

Generally, the bigger the cache, the faster the 

code will be executed, although as cache size 

increases, access latency tends to increase as well. 

If the cache size is still smaller than the dataset 

size and many RAM accesses are used, larger 

cache will reduce overall delays. If the cache size 

is already larger than the dataset size, then 

increasing it is counterproductive. 

 

If you have an RTX64 application that uses 

multiple cores, having a level 2 cache shared only 

by the RTX64 cores may be helpful (see section 

1.3).

b. Chipset & RAM c. I/O Devices 
 

With a heavy application, the RAM access will 

be the bottleneck. The size of the RAM is not the 

issue. You need to make sure all the data used by 

the applications can fit in it; any extra space will 

not change anything. The frequency of the RAM & 

Chipset bus, however, is critical and will determine 

how fast the CPU can access all the data used. For 

this reason, you should consider as fast a frequency 

as you can afford. 

Any possible bottleneck and conversion delay 

should be avoided as there will be enough 

limitations from the RAM access side. 

 

Any device linked to RTX64 should have its own 

PCI-e line to avoid delays. New processors only 

support PCI-e so PCI devices are actually grouped 

and linked to PCI-e lines by hardware chips. This 

should be avoided if possible as this extra chip 

will introduce uncontrolled delays. Only devices 

directly connected to the chipset will deliver good 

performance. 

 

All sleep and power saving options should be 

disabled for the relevant PCI-e lines. These options 

are in the BIOS and usually not modifiable by the 

user, so a correctly configured BIOS should be 

requested from the computer vendor. 

Selecting a Hardware Platform 
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