
I. Overview
Digital Signal Processors (DSPs) have specialized

architectures that are optimized for heavy math

computations and they have dominated the real-time

digital signal processing market as a cost-effective

solution for many complex designs.

Although DSPs remain a viable choice for many

systems, developers are finding that proprietary DSPs

are no longer required to perform real-time digital signal

processing. Instead, developers are migrating to the

IntervalZero RTX Real-time Platform, which comprises

multi-core x86 general purpose processors (GPPs),

the Windows operating system and RTX real-time

software to outperform DSPs, to significantly reduce

costs, and to streamline development cycles.

This paper compares DSP-based systems with

systems based on the RTX Real-time Platform and

provides an overview of the economic and operational

benefits that are catalysts for the increasing migration

from DSPs. IntervalZero’s symmetric multiprocessing-

enabled RTX software provides hard real-time

functionality for Windows operating systems, including

the breakthrough Windows 7 with its touch and

gesture capabilities.

II. System Diagrams
a. DSP-Based Platform

Diagram 1 - DSP

DSPs rely on specialized architectures designed

for heavy math computations, but not for general

processing. Because of DSPs’ computational focus,

GPPs are used for human machine interface (HMI)

and general purpose functions such as input and

output (Diagram 1). Additionally, it should be noted

that DSPs require separate memory devices for each

device and separate buses are needed for all inter-

processor communications (i.e. PCIe or Serial).

b. RTX Real-time Platform

Diagram 2 - RTX

The RTX Real-time Platform takes a different approach,

with the multiple cores divided up for dedicated real-

time processing and general purpose processing.

Diagram 2 illustrates a multi-core x86 device with

cores dedicated for Windows and cores dedicated to

RTX for real-time signal processing functions. Unlike

the DSP design, memory is shared using the same

high-speed bus, allowing for data sharing and inter-

processor communications.

The following chart shows a comparison of the two

architectures and in the sections that follow, this paper

will discuss the merits of the architectures in detail.

White Paper

Better Digital Signal Processing Performance;
Lower Costs With Innovative IntervalZero RTX Real-time Platform

Page 1

Traditional DSP System Design

DSP
1

Real-Time
Processing

Real-Time
Processing

Real-Time
Processing

DSP
2

DSP
3

DSP/FPGA SubsystemDuo Core System

RTX Real-Time Platform

Hardware Options

Application Platform

RTX Platform

Real-Time ApplicationWorld Class
User Interface

Core
0

Core
X

Core
X+1

Core
X+2

... Core
X+31

Windows Kernel

x64 Multicore (2011)Atom (Now)

Windows Real-Time Kernel Extension - RTX

x86 Single or
Multicore (Now)

III. Comparison Chart: DSP vs. RTX Real-time Platform

IV. Hardware Design:
The x86/x64 multi-core advances from Intel and

AMD are changing the way systems developers meet

real-time signal processing needs. New GPPs not

only have multiple cores with extremely high clock

speeds, but also perform complex math efficiently.

They deliver several times the performance of standard

DSPs, as can be seen from the benchmarks in the

comparison chart.

Additionally, multi-core x86 devices are delivered with

Commercial off the Shelf (COTS) hardware, which is not

usually an option for DSP users. COTS hardware rather

than custom hardware translates into reduced costs,

shorter time to market, and less risk.

a) �Processor Selection

When replacing DSPs with x86 multi-core, attention

should be focused on the number of cores needed,

as well as which x86 processor family best fits the

system requirements. As a rough guideline, there can

be a 1:1 relationship between DSPs and x86 cores.

Because of the extremely high clock speeds with the

x86 cores, the design will likely require fewer cores,

but the 1:1 ratio is a conservative start, with room

for optimization.

Both Intel and AMD have different processor

families based on cost and power. For example,

Intel’s Atom and AMD’s Fusion devices are focused

on embedded systems requiring low power and

cost minimization.

b) �Board Design

In DSP-based systems, engineers spend a great

deal of time selecting the right processor so that

the board can be designed and built in time for the

software. Having to make hardware commitments

early in the design often creates challenges and any

miscalculation can lead to a hardware redesign, which

will have a negative impact on the delivery schedule.

When using the RTX Real-time Platform there are

no strict deadlines for choosing and designing the

hardware. Because RTX is x86 based, standard

COTS hardware is available for both development

and production. With no custom boards or drivers

required for development, the final hardware

selection is performed later in the design cycle.

This reduces risk and greatly improves the chances

of releasing products on time.

Page 2

Category DSP Platform RTX Real-time Platform RTX Benefit

Hardware Design •	Custom board design
•	 Long development cycle
•	Difficult to modify hardware
•	Requires In Circuit Emulators (ICE)

•	 (COTS)
•	 Short development cycle
•	Easy to change hardware
•	 Local Debug – no ICE needed

•	Reduced Cost
•	Reduced Risk
•	 Faster Time To Market

Drivers / BSP •	Custom Drivers – device specific •	 Standard Drivers •	Cost
•	Productivity

System Communication •	Custom protocol
•	Custom buses

•	 Shared memory
•	 Standard APIs

•	Ease of use
•	 Future proof

Memory •	Chip Down – hard to change
•	 Limited selection
•	 Limited memory reach (1GB)
•	No MMU

•	PnP/COTS Modules – easy to change
•	 Large selection
•	 Large memory reach (>4GB)
•	MMU – Virtual memory

•	Reduced system size, cost 	
and complexity

RTOS •	Proprietary •	winAPI •	 Familiar API

Development Environment •	Proprietary Tools
•	Manufacture specific
•	Proprietary Compilers

•	 Standard x86 Tools
•	Microsoft Visual Studio
•	 Intel and Microsoft Compilers

•	Common tool chain 	
throughout the product

Code Base •	Assembly and C
•	Architecture specific

•	C, C++, C#
•	Universal / Portable

•	Uses other higher level 	
languages for non real-time

DSP Libraries •	Processing libraries from OEM •	 Intel supplied IPP library
•	Other 3rd party libraries

•	No requirement to use 	
OEM proprietary libraries.

Benchmarks •	1.25 GHz - Max core speed
•	20 GFLOPS / Device Max

•	3.0 GHz - Max core speed
•	>50 GFLOPS / Device Max

•	 Faster
•	Higher performing

Also, because RTX is based on an x86 Windows

architecture, engineers can use PCs as both

development and target machines. No separate

target system with specialized in circuit emulators

is needed to develop and debug code. As the

comparison chart shows, RTX’s use of COTS

hardware reduces both engineering costs and risks.

c) �Communication

DSP-based systems rely on custom hardware and

software interfaces when communicating between

devices. Serial lines and sometimes PCI buses are

used for inter-processor communications. These

custom interfaces are troublesome to design on

custom hardware and can be difficult to upgrade

as requirements change.

The RTX Real-time Platform uses shared memory

and formalized APIs to communicate between the

processes. Because everything is running on a

single device, it is easy to share data and messages

between threads running on different cores. This

communication architecture makes programming

easy and scalable.

d) �Memory Selection

While DSPs require separate memory devices, with

the RTX Platform memory is consolidated into a

single memory device. Also, the x86-based platform

can use standard off-the-shelf memory modules

(i.e. 4GB SDRAM DIMM) and memory modules can

be easily changed as system requirements dictate.

DSPs require on-board memory chips because of

strict timing and routing requirements. Switching

out memory chips is difficult and requires board

changes to add or remove memory. The DSP-based

approach is more costly, complex and less flexible

than the RTX Platform.

V. Software Design:
Software advances have also had significant impact

on DSP-based systems. The demand for standardized

tooling in lieu of the proprietary tool sets is a recent

change for many DSP developers. Programming

DSPs requires proprietary tools and lower-level

languages such as C and Assembly. Many engineering

teams find that proprietary DSP tools and low-level

languages require specialized expertise, which is often

very difficult to find and expensive to acquire. The

use of standardized development tools and higher-

level languages, such as Visual Studio and C++, not

only increases productivity but also greatly reduces

engineering costs.

a) �General Purpose OS:

The demand for complex graphical user interfaces

(GUIs) has also impacted DSP- based systems.

Customers are increasingly seeking elaborate

touch-and-gesture-based user interfaces on top

of a real-time subsystem. DSPs have never had

the GUI and I/O support to satisfy most complex

system requirements. That is why GPP’s running

general purpose operating systems are typically

found next to DSPs to handle all of the I/O and the

complex user interfaces.

As a result of the strong demand for powerful GUIs,

Windows is becoming the preferred operating

system because of its abundant tools support and

its standardization. The use of standardized tools

like Visual Studio and the large support structure of

Microsoft’s Developers Network make transitioning

from DSPs to RTX straight forward.

b) �Real-time Operating System:

DSPs use proprietary RTOSs from device

manufacturers such as DSP/BIOS from Texas

Instruments (TI) or VDK from Analog Devices (ADI).

These DSP-based

RTOSs are quite capable, but have significant

limitations because of the lack of communications

among the different DSP cores. Each DSP runs

its own application and very little inter-processor

communication is used.

The RTX Real-time Platform implements a single

symmetric multiprocessing scheduler across all of

the cores in the real-time subsystem (Diagram 3).

Instead of a separate RTOS and application running

on each real-time core, the RTX Platform uses

a single real-time scheduler to schedule threads

across a number of different cores. The flexible

SMP scheduling model makes synchronization

Page 3

and communications among the different cores/

threads simple and easy to implement.

Load balancing can be easily implemented from the

APIs provided by the RTX Subsystem. The RTX APIs

enable threads to be moved between processors

during runtime.

Diagram 3 – RTX SMP-enabled Scheduler

This scalability translates well when moving

the application to systems with different core

configurations. When cores are either added or

removed from a system, the user can easily use

logic within their application to load balance

threads as needed.

c) �Development Tools

DSP manufactures provide proprietary tools such

as Code Composer Studio from TI and

VisualDSP++ from ADI. While these tools are very

useful for developing DSP-based applications,

market demand and cost pressures are providing

impetus for more standardized tooling. Additionally,

DSPs’ low-level tooling and proprietary coding

practices do not promote code reuse and

portability. This translates into longer development

times and higher risks. Many developers are finding

that working with proprietary DSP tools is not only

challenging, but also costly to maintain.

RTX uses Microsoft’s Visual Studio which is

the industry standard tool for x86/x64- based

programming. Finding engineering talent for

Microsoft tools is easier and more cost effective

than is the case with DSPs. Leveraging the support

and robustness of Visual Studio and the Microsoft

Developers Network (MSDN) makes for increased

productivity and reduced costs. Most engineering

teams prefer the use of standardized tools for their

robustness and their support.

d) �Code Base

Migrating code base to the RTX Platform is straight

forward.

When considering a port, the developer needs to be

aware that there are two parts to an RTX application.

First, there is the general purpose, or non real-time

processing and then there is the DSP/real-time

processing. The non real-time/general purpose

code will directly port over using a standard Visual

Studio project and will run on the Windows operating

system. The DSP/real-time code will also be built

using Visual Studio, but it will be running on the RTX

controlled cores (real-time subsystem).

DSPs are usually programmed in both C and

Assembly. While the Assembly code is not portable

and will need to be written in C or C++, the C code

can be ported over using Visual Studio. The RTX

Platform enables real-time users to code efficiently

in C++ rather than having to start with C and

Assembly programming. While DSPs do have some

C++ support, object-oriented languages lose too

much efficiency to be useful when compiled for

DSP architectures.

The RTX Platform’s strong support for C++ is a

distinct advantage. Through RTX’s use of powerful

x86 devices, programmers can use C++ to increase

productivity.

By keeping the code base in higher level languages

like C/C++, portability and code reuse can be

leveraged to reduce costs and risks.

e) �DSP Libraries

Texas Instruments and Analog Devices both provide

optimized DSP libraries to help developers with

performance and time to market. To take the place

of these DSP libraries Intel created the Integrated

Performance Primitives (IPP). The IPP library is

essentially a collection of optimized functions (i.e.

DSP, imaging, video, etc.) for the multi-core x86

architectures. The IPP library helps to increase

productivity and performance by providing optimized

routines for the most common DSP-based functions.

Page 4

VI. Benchmarks:
There are a number of ways to measure performance

between processors. Because the focus is on DSPs,

measuring the number of floating point operations per

second (GFLOPS) is used in this comparison.

The comparison above is between aC66xx multi-core

DSP from Texas Instruments and an Intel i7 Sandy

Bridge device.

The TI C66xxx @ 1.25 GHz outputs 20 Single Precision

GFLOPS per core. The Intel i7 Sandy Bridge processor

outputs 32 Double Precision GFLOPS per core.

Although the GFLOPS performance is very strong with

the TI DSP, it does not match the raw performance and

speed of the Intel processors.

VII. Summary:
The RTX Real-time Platform marries the powerful

Windows 7 interface with the real-time signal processing

capabilities of Intel’s and AMDs multi-core architectures.

Using standardized COTS hardware and standardized

tooling greatly simplifies the engineering effort and

reduces cost. The RTX Platform increases innovation,

portability and scalability while also reducing costs.

There will always be a need for digital signal processing,

but because of the many hardware and software

advances, dedicated DSPs are an option, but not a

requirement. For complex systems requiring powerful

graphical user interfaces along with real-time signal

processing, there are higher-performing, more-scalable,

less costly options.

DSP Intel Multi-core

Benchmarks
•	1.25 GHz - 	
Max core speed

•	20 GFLOPS / Core

•	3.0 GHz - 	
Max core speed

•	32 GFLOPS / Core

					 IntervalZero.com

Copyright © 2011 IntervalZero, Inc. All rights reserved. All trademarks, trade names, service marks and logos referenced herein belong to their
respective companies

