
Overview
The continuous advance in multicore technologies is the

catalyst for software innovation that is spawning a new

generation of embedded systems that are less costly to

develop, higher performing, and scalable because tasks

run in parallel.

The ideal architecture for these new systems is described

in an earlier white paper entitled: “A Soft-Control

Architecture: Breakthrough in Hard Real-Time Design

for Complex Systems.” This white paper presumes a

basic understanding of how Soft-Control Architectures

can replace FPGA/DSP/PowerPC and proprietary

RTOS solutions with a hard-real-time software plug-in

for Microsoft Windows to deliver breakthrough cost,

performance and scalability benefits.

System developers are already capitalizing on Soft-

Control Architectures to gain sustained competitive

advantages in markets as diverse as Industrial

Automation, Medical Systems, Test & Measurement,

and Digital Media,

This white paper examines two prevalent

multiprocessing approaches that are competing to

deliver on the value of Soft-Control Architecture.

They are symmetric multiprocessing (SMP), and

asymmetric multiprocessing (ASMP), often referred to

as virtualization, or hypervisor technology.

Both approaches have attributes and challenges, but

the comparison scale tips heavily in favor of SMP for

developers seeking to maximize scalability and minimize

latency by fully exploiting the power of x86 multicore –

four cores, six cores, eight cores, and beyond.

As you will see, virtualization/ASMP does offer short-

term gains in terms of initial cost reduction, but is a

dead-end technology for a true real-time system that

requires scalability, precision and performance – all

with minimal latency.

Because SMP-enabled architectures are dynamic –

rather than static as virtualization/ASMP architectures

are – they offer developers a wider range of options to

streamline and simplify the development processes,

while taking full advantage of multicore processing

capabilities to deliver systems that change the basis

of competition.

This is especially true for developers of embedded

systems that have complex Human Machine Interfaces

(HMIs) and very demanding hard real-time and control

requirements. Large-format medical systems such as a

MRIs, and Digital Media mixing consoles, are examples

of systems that have these requirements.

White Paper

Symmetric Multiprocessing or Virtualization
Maximizing the Value and Power of a Soft-Control Architecture

Page 1

Virtualization/ASMP is the status quo,

albeit on a single chip. This mirror-image

status quo is extremely limiting. It lacks

flexibility, inhibits performance, and

prevents scalability as developers move

beyond dual core.

As mentioned above, a thorough description of Soft-

Control Architectures is available in an earlier white

paper, but we are including a synopsis of that paper’s

highlights to provide context for the comparative

information included in this paper.

FPGAs and DSPs have long ruled the market when

it comes to hard real-time for motion control and

other complex, high-precision and high-performance

systems. That is no longer the case. Advancing

technologies make it possible for OEMs to deploy Soft-

Control Architectures that can displace much of this

proprietary hardware.

The major trends favoring an SMP-enabled Soft-Control

Architecture include:

• Increasingly powerful x86 processor technologies;

• The drive toward more commercial off-the-shelf

(COTS) hardware and software;

• Advances in, and the availability of, Ethernet-based

field buses;

• Convergence of components in system design; and

• The advent of touch-centered usability – particularly

multi-touch – and motion-sensing technologies.

The resulting Soft-Control Architecture that capitalizes

on these trends leverages multicore x86. It runs on

Windows (including Windows 7 with its touch and

gesture technology) on a single multicore chip along

with a symmetric multiprocessing-enabled hard-real

time plug-in, such as IntervalZero’s RTX 2009 SMP.

Different technologies can be used to build a Soft-

Control Architecture, but to deliver the most value,

developers must keep in mind eight key success

characteristics:

1. A common Integrated Development Environment

(IDE) and world-class graphical user interface

(GUI) – Microsoft Visual Studio and the Windows

operating system, including Windows 7 and

Window Embedded Standard 7;

2. An SMP-enabled real-time subsystem executing

directly on multiple assigned processors (not

multiple instances);

3. Visibility of the hardware to all real-time processes;

4. The ability to schedule real-time threads across

multiple processors, or dedicate certain logic

to specific cores, with hooks for load balancing;

5. Direct access to shared data/memory without

additional copies and IPC usage;

6. Minimization of hardware requirements –

processors, memory, power and footprint;

7. The ability to debug across the cores;

8. The ability to code once and scale automatically.

While SMP delivers on all eight of these success

characteristics, virtualization/ASMP delivers partially on

only one – minimization of hardware requirements (#6)

– by consolidating what was formerly two-PC systems

down to a single PC system.

Virtualization/ASMP does allow many different operating

systems/applications to reside on the same multicore

hardware, and share peripheral resources such as

I/O, serial, Ethernet, USB, etc. For that reason it

appears to be a good way to reduce system costs

and system complexity.

Page 2

FPGAs and DSPs have long ruled the

market when it comes to hard real-time for

motion control and other complex, high-

precision and high-performance systems.

That is no longer the case.

Applications that formerly ran on separate PC systems

can be consolidated onto a single piece of silicon in a

single PC system. This cuts the bill of materials costs

and allows existing code to be preserved, eliminating

the need for rewriting and re-architecting. However, this

is where things reach a dead end. The static nature

of virtualization/ASMP architectures prevent them

from scaling and therefore from being viable long-

term solutions.

For example, with virtualization/ASMP all the elements

that were required in a multi-processor configuration –

separate real-time operating system (RTOS), separate

code base, separate development tools, and separate

development teams – are mirrored on a single system.

The customer is not managing any fewer instantiations,

but rather is adding a hypervisor to manage them.

In short, while there is a gain in terms of hardware

costs, there is no accompanying software breakthrough

– as there is with SMP – that enables developers to

scale up the system on multicore and build systems

that differentiate themselves in the marketplace.

For example, as embedded developers seek to

leverage more and more cores, by breaking larger

functions into different cores for improved performance;

or by breaking cores into related functions; or by

dedicating cores for specific computational and math

functions – all of which can be accomplished with

SMP – virtualization/ASMP’s mirror-image architectures

present significant challenges.

Virtualization/ASMP is the status quo, albeit on a single

chip. This mirror-image status quo is extremely limiting.

It lacks flexibility, inhibits performance, and prevents

scalability as developers move beyond dual core.

A closer look at the other seven success characteristics

shows the comparative strength of SMP and exposes

the weaknesses in virtualization/AMSP in delivering a

hard real-time Soft-Control Architecture.

1. A common Integrated Development Environment

(IDE) and world-class graphical user interface

(GUI) – Microsoft Visual Studio and the Windows

operating system, including Windows 7 and

Window Embedded Standard 7.

While a virtualization/ASMP technology might, or

might not, offer a common Development Environment,

virtualization does not provide an integrated

environment. Each instantiation of the OS must

have its own code and is blind to the code in the

other silos running in other cores. Virtualization’s

lack of integration causes management costs to

escalate steeply.

2. A single real-time subsystem instance executing

directly on multiple assigned processors (not

multiple instances)

SMP architectures benefit substantially by having a

secondary scheduler – in addition to, and separate

from, the Windows scheduler – that is dedicated for the

cores on which all of the guest application processing

takes place.

This secondary scheduler provided by an SMP-enabled

real-time plug-in such as IntervalZero’s RTX 2009 SMP,

has clear visibility across all of the processors. This

assures proper utilization and synchronization among

the cores.

This allows the user to implement a supervisory

process that can monitor the activity on the various

cores. Based on environment demands or user

commands, the scheduler can use the various API calls

Page 3

This secondary scheduler provided by

an SMP-enabled real-time plug-in such

as IntervalZero’s RTX 2009 SMP, has

clear visibility across all of the processors.

This assures proper utilization and

synchronization among the cores.

to distribute or consolidate functions across the cores.

This is extremely useful for optimizing throughput, and

minimizing power consumption by idling cores.

As an example, let’s look at a quad core x86 device

where one core is allocated to Windows and the

remaining three cores are allocated for the SMP

subsystem. Under heavy conditions, all three of the

SMP dedicated cores could be fully loaded at 100%,

which is an optimal use of the hardware. However,

what if the 100% loading only happens at a duty cycle

of 20%? This is an inefficient use of the multicore

architecture, wasting power and performance. SMP

APIs enable users to write a supervising process, or

load balancer, that can consolidate the functions onto a

single core, in turn allowing the system to idle/park two

cores to reduce power consumption.

The same API calls can also be used to distribute the

threads/processes to underutilized cores in situations

where a single core is overloaded, resulting in greater

processing and throughput.

Virtualization/ASMP architectures have a great deal of

difficulty implementing a supervisory function or load

balancer to help manage the processing among the

various cores because there is a separate application

image and RTOS for each core. Each application

is cognizant only of what is scheduled within that

application and also through whatever hardware-

based IPC that has been designed. This means that

in order to properly move and schedule threads/

processes between cores, the original application

would have to have been pre-built with all of the

necessary communication and functional support for

load balancing, which is not typically in the design

specifications for a single core device (i.e. DSP). These

load balancing APIs are native to the SMP scheduler.

Additionally, virtualization/ASMP architectures inherit

limitations from the legacy multi-processor design. For

example, the copied design might have had a number

of performance limitations (CPU, memory, I/O, etc) that

were present in a DSP that was used in that design.

These limitations needn’t necessarily be carried over

to a new multicore device, but because the application

is literally imported directly over into the virtualization/

ASMP design, the constrictive limitations remain in

place. The result: a less than optimal design.

3. Visibility of the hardware to all real-time processes

With SMP architectures, the guest applications run

directly on the cores with unobstructed access to

the I/O. In short, there is full visibility of the hardware

to all real-time processes. This is not the case with

virtualization/ASMP.

Because a virtualization/ASMP architecture is simply

a direct import of what were once separate applications

running on dedicated devices, no consideration is given

to how the host and guest applications can fully use

the new device’s features and capabilities. This lack

of coordination ultimately leads to a great deal

of hardware contention.

Let’s look at the example of a consolidation of one

Windows device and two DSPs into a single quad core

x86. Each of the different applications had their own

exclusive hardware/peripherals that include anything

from serial ports, to Ethernet controllers, to USB ports.

This is where an virtualization/ASMP architecture

requires a hypervisor, or abstraction layer, to manage

and arbitrate the peripherals among all of the different

applications. This creates the illusion, to the different

applications, that they have exclusive rights to a

particular piece of hardware. Although functional,

this arbitration results in system latency. As the number

Page 4

With SMP architectures, the guest

applications run directly on the cores

with unobstructed access to the I/O.

In short, there is full visibility of the

hardware to all real-time processes.

of applications increase there more contention and

the latencies amplify.

Conversely, in an SMP architecture, all system

partitioning is done up front regarding which thread/

process will own or share a particular piece of

hardware (Ethernet, USB, etc). Traditionally in an

SMP architecture, the Windows scheduler handles all of

the HMI as well as any non-critical processing, while the

secondary real-time scheduler handles all time-critical,

and CPU-intensive threads/processes.

Lets look again at the example consolidation of one

Windows device and two DSPs into a single quad core

x86 – this time with an SMP-enabled real-time plug-in

to Windows. The first step in re-architecting for SMP is

to schedule all time-critical or CPU-intensive threads/

processes to the secondary SMP scheduler while

the Windows scheduler retains its functionality. The

designer then determines where the peripheral/drivers

are to reside: either in the non time-critical Windows

subsystem or in the SMP real-time subsystem. Once

a driver is assigned, that particular subsystem has

unobstructed and exclusive rights to that peripheral.

This architecture scales very well because as the

core count increases, the SMP scheduler can easily

control the threads/processes and drivers on any of

the cores though simple synchronization mechanisms

(semaphores, mutexes, etc.).

There are situations where drivers can be shared

and in those cases the driver APIs can be exported

between the subsystems to share both peripherals

and synchronization calls. This illustrates how SMP

provides not only a great deal of performance, but

also a great deal flexibility on how a system can be

built for scalability and parallelism. Scalability and

parallelism are becoming increasingly important,

given the incredible acceleration of multicore devices

from Intel and AMD.

4. The ability to schedule real-time threads across

multiple processors, or dedicate certain logic to

specific cores, with hooks for load balancing

SMP has the hooks/APIs required to move threads/

processes between cores. This is a necessary building

block for load balancing and proper usage of a

multicore architecture.

Load balancing is a key for assuring the best

throughput and optimal core utilization.

As discussed above, virtualization/ASMP architectures

have difficulty with load balancing because the original

system partitions are carried over from the copied

legacy design. Threads/processes are contained within

a particular guest application and there is no easy

way to move functions between processors without

additional copies and considerable complicated

coordination among the different cores.

5. Direct access to shared data/memory without

additional copies and IPC usage.

Because SMP architectures simply share memory with

the host application, it is natural to share data among

the different cores/applications. This reduces memory

requirements and improves performance by eliminating

any coping of data.

Virtualization/ASMP architectures must make multiple

copies of the data and the program code because the

original design limitations are inherited – for example,

the IPC communication and the requirement for

Page 5

SMP has the hooks/APIs required to move

threads/processes between cores. This

is a necessary building block for load

balancing and proper usage of a multicore

architecture. Load balancing is a key for

assuring the best throughput and optimal

core utilization.

exclusive memory for program and data. Buffers of

redundant data add latency.

6. Minimization of hardware requirements –

processors, memory, power and footprint

SMP architectures and virtualization/ASMP

architectures both consolidate the hardware

requirements and reduce the compute hardware costs

by 25-50%. However, virtualization/ASMP does not

earn full marks because hardware consumption is

not optimized and because contention and latency

can occur at the hypervisor level that not visible at the

application level.

By contrast, SMP architectures have incrementally

more efficiencies and smaller footprints because there

is a great deal of shared data among the cores as well

as between the two subsystems (Windows and SMP).

This reduces the amount of memory needed and lowers

system cost even further. Also, the greater efficiency

and performance enabled by organizing threads/

processes across the different cores often reduces the

processor requirements, further lowering system costs.

7. The ability to debug across the cores

This is very important.

In a virtualization/ASMP architecture, contention

and latency can occur at the hypervisor level that is

not visible at the application level. This is particularly

troublesome – making debugging extremely difficult,

and system failure a major concern.

For a tool set to be able to debug a multicore system

properly, it has to be aware of all of the operating

systems and have visibility across the entire system. In

a virtualization/ASMP architecture, because the original

applications and RTOSes are being imported in directly,

the IDE is not cognizant of the guest applications

running on the other cores.

In this case, separate tool sets are required to debug

between the different cores or applications. This is

not particularly challenging in a dual core system, but

becomes increasingly overwhelming as the system

grows to four cores and beyond.

Imagine the complexity in debugging four-core or six-

core system where you have four or six more separate

IDEs trying to debug the different cores. The individual

IDEs/debuggers, although powerful in their own right,

have very limited visibility into the other environments.

This limited debug visibility issue is compounded when

dealing with the added latency a hypervisor introduces

as it arbitrates shared peripherals that were once

exclusive to the different applications.

It is also worth noting that when dealing with time-

critical applications, the added latencies created by a

hypervisor can present an unknown time constant that

has to be taken into account at the application layer.

Finally, in addition to the debugging complexities,

virtualization/ASMP architectures usually require the

user to maintain all the different tool sets and operating

systems. As the core count increases, the maintenance

of these different tool sets adds cost and creates a

support burden.

SMP architectures have a much simplified approach to

development tools and debugging.

SMP applications are built within the Visual Studio IDE

and it is fully aware of both the Windows and SMP

Page 6

In a virtualization/ASMP architecture,

contention and latency can occur at

the hypervisor level that is not visible at

the application level. This is particularly

troublesome – making debugging

extremely difficult, and system failure

a major concern.

schedulers. The SMP subsystem uses a secondary

scheduler that presides over all of the cores in the real-

time subsystem. As a result of having a single scheduler

for the SMP subsystem, there is no added debugging

complexity as the number of cores/applications

increase. The RTX debugger for Visual Studio has full

control and visibility across all of the cores as well as

the two schedulers – Windows and SMP.

 Applications within a SMP architecture have direct

interaction with and ownership of their peripherals,

eliminating any extra latencies that would have to be

accounted by the applications. This tight integration

makes development and debugging straightforward as

the user can easily set breakpoints between Windows

and the SMP subsystem all within Visual Studio.

SMP’s use of a single IDE simplifies and streamlines

debugging and tool maintenance extremely and is

very cost effective.

8. The ability to code once, and scale automatically.

This was touched upon above, but because

parallelism is so important, this aspect deserves a

fuller explanation.

SMP architectures include APIs to assign processor

affinities and ideal processors. These APIs allow

developers to code once for the ideal multicore

architecture, providing the ability for the software

to automatically scale to devices as more cores

become available.

On the other hand, after the first transition from

separate processors to a single piece of silicon, it

becomes difficult in a virtualization/ASMP environment

to properly utilize the different core multiples when

designing for a variety of systems.

Without a major rewrite of the code, the virtualization/

ASMP design must put multiple copies/images of the

original guest application on each of the additional

cores. This is redundant and wasteful because there

is no ability to improve performance and throughput

by grouping threads/processes that would benefit by

running on particular cores.

Developers are right to be very concerned that

virtualization/ASMP does not mitigate the complexity

and inefficiency that existed in the traditional

separate-processor systems – multiple tool

environments, multiple development teams and

multiple operating systems.

And in consolidating from separate chips to a multicore

architecture in which the peripherals are shared,

resource contention can become a significant challenge

for the various development teams.

Sharing peripherals that were formerly dedicated to

each application inevitably means that some operations

have to wait for access while a needed peripheral is

busy. This is not only inefficient, but antithetical to the

goal of getting the most processing speed and power

out of the multicore hardware. In short, idle silicon is

a waste of resources. For developers to truly reduce

system costs they must maximize all processing

potential all the time.

As detailed earlier, these challenges simply do not exist

in SMP architectures.

In short, although virtualization/ASMP may be a suitable

approach for single-task or less complex environments

– reasons why desktop virtualization is readily

embraced – it does not measure up as a solution for

complex multi-task systems where hard real-time,

precision, flexibility, time-to-market acceleration and

scalability are mandatory.

Page 7

As a result of having a single scheduler

for the SMP subsystem, there is no added

debugging complexity as the number

of cores/applications increase.

In fact, for virtualization/ASMP to be a credible option

for complex embedded systems, a Windows hypervisor

extension would be required. This would allow a real-

time SMP product to plug in and extend the core and

peripheral access.

With SMP, developers have many options in rethinking

and redesigning their systems, not only to get the

most out of multicore capabilities, but also to enhance

the development processes for long-term economic

benefits and scalability.

By augmenting the Windows/x86 system with an SMP-

enabled, hard real-time subsystem that adds a second

independent scheduler, systems developers get a Soft-

Control Architecture that is well suited for maximizing

multiprocessing capabilities, as well as for delivering

significant economic and performance benefits that

extend far beyond system consolidation.

Conclusion
At best, virtualization/ASMP represents a short-

term, low-value consolidation path from multiple

systems to multicore. However, for a truly simplified

and streamlined architecture that is high-performing,

scalable, efficient. and built for long-term value,

an SMP-enabled Soft-Control Architecture is

recommended.

 IntervalZero.com

Copyright © 2010 IntervalZero, Inc. All rights reserved. All trademarks, trade names, service marks and logos referenced herein belong to their
respective companies

